1887

Abstract

Adenovirus protein VII is a highly cationic core protein that forms a nucleosome-like structure in the adenovirus core by condensing DNA in combination with protein V and mu. It has been proposed that protein VII could condense DNA in a manner analogous to mammalian histones. Due to the lack of an expression and purification protocol, the interactions between protein VII and DNA are poorly understood. In this study we describe methods for the purification of biologically active recombinant protein VII using an expression system. We expressed a cleavable fusion of protein VII with thioredoxin and established methods for purification of this fusion protein in denatured form. We describe an efficient method for resolving the cleavage products to obtain pure protein VII using hydroxyapatite column chromatography. Mass spectroscopy data confirmed its mass and purity to be 19.4 kDa and >98 %, respectively. Purified recombinant protein VII spontaneously condensed dsDNA to form particles, as shown by dye exclusion assay, electrophoretic mobility shift assay and nuclease protection assay. Additionally, an bioluminescence assay revealed that protein VII can be used to enhance the transfection of mammalian cells with lipofectamine/DNA complexes. The availability of recombinant protein VII will facilitate future studies of the structure of the adenovirus core. Improved understanding of the structure and function of protein VII will be valuable in elucidating the mechanism of adenoviral DNA condensation, defining the morphology of the adenovirus core and establishing the mechanism by which adenoviral DNA enters the nucleus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.000817
2017-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/98/7/1785.html?itemId=/content/journal/jgv/10.1099/jgv.0.000817&mimeType=html&fmt=ahah

References

  1. Pérez-Berná AJ, Marion S, Chichón FJ, Fernández JJ, Winkler DC et al. Distribution of DNA-condensing protein complexes in the adenovirus core. Nucleic Acids Res 2015; 43:4274–4283 [View Article][PubMed]
    [Google Scholar]
  2. Benevento M, Di Palma S, Snijder J, Moyer CL, Reddy VS et al. Adenovirus composition, proteolysis, and disassembly studied by in-depth qualitative and quantitative proteomics. J Biol Chem 2014; 289:11421–11430 [View Article][PubMed]
    [Google Scholar]
  3. Wiethoff CM, Nemerow GR. Adenovirus membrane penetration: tickling the tail of a sleeping dragon. Virology 2015; 479-480:591–599 [View Article][PubMed]
    [Google Scholar]
  4. Reddy VS, Nemerow GR. Structures and organization of adenovirus cement proteins provide insights into the role of capsid maturation in virus entry and infection. Proc Natl Acad Sci USA 2014; 111:11715–11720 [View Article][PubMed]
    [Google Scholar]
  5. Russell WC. Adenoviruses: update on structure and function. J Gen Virol 2009; 90:1–20 [View Article][PubMed]
    [Google Scholar]
  6. Condezo GN, Marabini R, Ayora S, Carazo JM, Alba R et al. Structures of adenovirus incomplete particles clarify capsid architecture and show maturation changes of packaging protein L1 52/55k. J Virol 2015; 89:9653–9664 [View Article][PubMed]
    [Google Scholar]
  7. Vayda ME, Rogers AE, Flint SJ. The structure of nucleoprotein cores released from adenovirions. Nucleic Acids Res 1983; 11:441–460 [View Article][PubMed]
    [Google Scholar]
  8. Stillman BW, Bellett AJ. An adenovirus protein associated with the ends of replicating DNA molecules. Virology 1979; 93:69–79 [View Article][PubMed]
    [Google Scholar]
  9. Rekosh DM, Russell WC, Bellet AJ, Robinson AJ. Identification of a protein linked to the ends of adenovirus DNA. Cell 1977; 11:283–295 [View Article][PubMed]
    [Google Scholar]
  10. Pronk R, Stuiver MH, van der Vliet PC. Adenovirus DNA replication: the function of the covalently bound terminal protein. Chromosoma 1992; 102:S39–S45 [View Article][PubMed]
    [Google Scholar]
  11. Liu H, Jin L, Koh SB, Atanasov I, Schein S et al. Atomic structure of human adenovirus by cryo-EM reveals interactions among protein networks. Science 2010; 329:1038–1043 [View Article][PubMed]
    [Google Scholar]
  12. Puntener D, Engelke MF, Ruzsics Z, Strunze S, Wilhelm C et al. Stepwise loss of fluorescent core protein V from human adenovirus during entry into cells. J Virol 2011; 85:481–496 [View Article][PubMed]
    [Google Scholar]
  13. Gyurcsik B, Haruki H, Takahashi T, Mihara H, Nagata K. Binding modes of the precursor of adenovirus major core protein VII to DNA and template activating factor I: implication for the mechanism of remodeling of the adenovirus chromatin. Biochemistry 2006; 45:303–313 [View Article][PubMed]
    [Google Scholar]
  14. Chen J, Morral N, Engel DA. Transcription releases protein VII from adenovirus chromatin. Virology 2007; 369:411–422 [View Article][PubMed]
    [Google Scholar]
  15. Giberson AN, Davidson AR, Parks RJ. Chromatin structure of adenovirus DNA throughout infection. Nucleic Acids Res 2012; 40:2369–2376 [View Article][PubMed]
    [Google Scholar]
  16. Mangel WF, San Martín C. Structure, function and dynamics in adenovirus maturation. Viruses 2014; 6:4536–4570 [View Article][PubMed]
    [Google Scholar]
  17. Edvardsson B, Everitt E, Jörnvall H, Prage L, Philipson L. Intermediates in adenovirus assembly. J Virol 1976; 19:533–547[PubMed]
    [Google Scholar]
  18. Ishibashi M, Maizel JV Jr. The polypeptides of adenovirus. V. Young virions, structural intermediate between top components and aged virions. Virology 1974; 57:409–424[PubMed] [CrossRef]
    [Google Scholar]
  19. Sung MT, Cao TM, Lischwe MA, Coleman RT. Molecular processing of adenovirus proteins. J Biol Chem 1983; 258:8266–8272[PubMed]
    [Google Scholar]
  20. San Martín C. Latest insights on adenovirus structure and assembly. Viruses 2012; 4:847–877 [View Article][PubMed]
    [Google Scholar]
  21. Pérez-Vargas J, Vaughan RC, Houser C, Hastie KM, Kao CC et al. Isolation and characterization of the DNA and protein binding activities of adenovirus core protein V. J Virol 2014; 88:9287–9296 [View Article][PubMed]
    [Google Scholar]
  22. Haruki H, Gyurcsik B, Okuwaki M, Nagata K. Ternary complex formation between DNA-adenovirus core protein VII and TAF-Iβ/SET, an acidic molecular chaperone. FEBS Lett 2003; 555:521–527 [View Article][PubMed]
    [Google Scholar]
  23. Schmitt J, Hess H, Stunnenberg HG. Affinity purification of histidine-tagged proteins. Mol Biol Rep 1993; 18:223–230 [View Article][PubMed]
    [Google Scholar]
  24. Bornhorst JA, Falke JJ. Purification of proteins using polyhistidine affinity tags. Methods Enzymol 2000; 326:245–254[PubMed] [CrossRef]
    [Google Scholar]
  25. Brown DT, Westphal M, Burlingham BT, Winterhoff U, Doerfler W. Structure and composition of the adenovirus type 2 core. J Virol 1975; 16:366–387[PubMed]
    [Google Scholar]
  26. Rancourt C, Keyvani-Amineh H, Sircar S, Labrecque P, Weber JM. Proline 137 is critical for adenovirus protease encapsidation and activation but not enzyme activity. Virology 1995; 209:167–173 [View Article][PubMed]
    [Google Scholar]
  27. Weber J. Genetic analysis of adenovirus type 2 III. Temperature sensitivity of processing viral proteins. J Virol 1976; 17:462–471[PubMed]
    [Google Scholar]
  28. Ortega-Esteban A, Condezo GN, Pérez-Berná AJ, Chillón M, Flint SJ et al. Mechanics of viral chromatin reveals the pressurization of human adenovirus. ACS Nano 2015; 9:10826–10833 [View Article][PubMed]
    [Google Scholar]
  29. Snijder J, Reddy VS, May ER, Roos WH, Nemerow GR et al. Integrin and defensin modulate the mechanical properties of adenovirus. J Virol 2013; 87:2756–2766 [View Article][PubMed]
    [Google Scholar]
  30. Greber UF. Virus and host mechanics support membrane penetration and cell entry. J Virol 2016; 90:3802–3805 [View Article][PubMed]
    [Google Scholar]
  31. Ortega-Esteban A, Bodensiek K, San Martín C, Suomalainen M, Greber UF et al. Fluorescence tracking of genome release during mechanical unpacking of single viruses. ACS Nano 2015; 9:10571–10579 [View Article][PubMed]
    [Google Scholar]
  32. Zoroddu MA, Kowalik-Jankowska T, Kozlowski H, Molinari H, Salnikow K et al. Interaction of Ni(II) and Cu(II) with a metal binding sequence of histone H4: AKRHRK, a model of the H4 tail. Biochim Biophys Acta 2000; 1475:163–168 [View Article][PubMed]
    [Google Scholar]
  33. Halcrow MA, Christou G. Biomimetic chemistry of nickel. Chem Rev 1994; 94:2421–2481 [View Article]
    [Google Scholar]
  34. Zoroddu MA, Peana M, Medici S, Casella L, Monzani E et al. Nickel binding to histone H4. Dalton Trans 2010; 39:787–793 [View Article][PubMed]
    [Google Scholar]
  35. Wang X, Moore SC, Laszckzak M, Ausió J. Acetylation increases the α-helical content of the histone tails of the nucleosome. J Biol Chem 2000; 275:35013–35020 [View Article][PubMed]
    [Google Scholar]
  36. Lee YW, Klein CB, Kargacin B, Salnikow K, Kitahara J et al. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Mol Cell Biol 1995; 15:2547–2557 [View Article][PubMed]
    [Google Scholar]
  37. Yan Y, Kluz T, Zhang P, Chen HB, Costa M. Analysis of specific lysine histone H3 and H4 acetylation and methylation status in clones of cells with a gene silenced by nickel exposure. Toxicol Appl Pharmacol 2003; 190:272–277 [View Article][PubMed]
    [Google Scholar]
  38. Nakao M. Epigenetics:interaction of DNA methylation and chromatin. Gene 2001; 278:25–31 [View Article][PubMed]
    [Google Scholar]
  39. Newcomb WW, Boring JW, Brown JC. Ion etching of human adenovirus 2: structure of the core. J Virol 1984; 51:52–56[PubMed]
    [Google Scholar]
  40. Corden J, Engelking HM, Pearson GD. Chromatin-like organization of the adenovirus chromosome. Proc Natl Acad Sci USA 1976; 73:401–404 [View Article][PubMed]
    [Google Scholar]
  41. Fedor MJ, Daniell E. Ionic and nonionic interactions in adenoviral nucleoprotein complexes. J Virol 1983; 47:370–375[PubMed]
    [Google Scholar]
  42. Mirza MA, Weber J. Structure of adenovirus chromatin. Biochim Biophys Acta 1982; 696:76–86 [View Article][PubMed]
    [Google Scholar]
  43. van Oostrum J, Burnett RM. Molecular composition of the adenovirus type 2 virion. J Virol 1985; 56:439–448[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.000817
Loading
/content/journal/jgv/10.1099/jgv.0.000817
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error