1887

Abstract

Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) is a serious bacterial disease in rice-growing regions worldwide. Phage therapy has been proposed as a potential measure to treat bacterial infections. In this study, a novel phage, Xoo-sp2, which infects Xoo was isolated from soil. The characteristics of Xoo-sp2, including the morphology, one-step growth curve and host range, were analysed. The genome of phage Xoo-sp2 was sequenced and annotated. The results demonstrated that Xoo-sp2 is a siphovirus and has a broad lytic spectrum, infecting 9 out of 10 representative Xoo strains. Genome analysis showed that the Xoo-sp2 genome consists of a linear double-stranded DNA molecule of length 60 370 bp. Annotation of the whole genome indicated that Xoo-sp2 encodes 79 putative open reading frames (ORFs). Comparative genomics analysis of Xoo-sp2 showed that it shares significant similarity only with Pseudomonas and Stenotrophomonas phages (with maximum identity reaching 80 % along 69 % of the genome), and thus represents a novel Xanthomonas phage. Xoo-sp2 significantly inhibited Xoo growth in liquid culture. An experiment with potted plants indicated that Xoo-sp2 could efficiently control BLB in living rice. In summary, our work characterized a novel Xanthomonas phage and demonstrated its potential as a prophylactic agent in the control of BLB in rice.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001133
2018-08-10
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/99/10/1453.html?itemId=/content/journal/jgv/10.1099/jgv.0.001133&mimeType=html&fmt=ahah

References

  1. Lee BM, Park YJ, Park DS, Kang HW, Kim JG et al. The genome sequence of Xanthomonas oryzae pathovar oryzae KACC10331, the bacterial blight pathogen of rice. Nucleic Acids Res 2005; 33:577–586 [View Article][PubMed]
    [Google Scholar]
  2. Liu W, Liu J, Triplett L, Leach JE, Wang GL. Novel insights into rice innate immunity against bacterial and fungal pathogens. Annu Rev Phytopathol 2014; 52:213–241 [View Article][PubMed]
    [Google Scholar]
  3. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 2012; 13:614–629 [View Article][PubMed]
    [Google Scholar]
  4. Jambhulkar PP, Sharma P. Development of bioformulation and delivery system of Pseudomonas fluorescens against bacterial leaf blight of rice (Xanthomonas oryzae pv. oryzae). J Environ Biol 2014; 35:843–849[PubMed]
    [Google Scholar]
  5. Peters RD, Sturz AV, Carter MR, Sanderson JB. Developing disease-suppressive soils through crop rotation and tillage management practices. Soil and Tillage Research 2003; 72:181–192 [View Article]
    [Google Scholar]
  6. Poulin L, Grygiel P, Magne M, Gagnevin L, Rodriguez-R LM et al. New multilocus variable-number tandem-repeat analysis tool for surveillance and local epidemiology of bacterial leaf blight and bacterial leaf streak of rice caused by Xanthomonas oryzae. Appl Environ Microbiol 2015; 81:688–698 [View Article][PubMed]
    [Google Scholar]
  7. van Hop D, Phuong Hoa PT, Quang ND, Ton PH, Ha TH et al. Biological control of Xanthomonas oryzae pv. oryzae causing rice bacterial blight disease by Streptomyces toxytricini VN08-A-12, isolated from soil and leaf-litter samples in Vietnam. Biocontrol Sci 2014; 19:103–111[PubMed]
    [Google Scholar]
  8. Fahad S, Nie L, Khan FA, Chen Y, Hussain S et al. Disease resistance in rice and the role of molecular breeding in protecting rice crops against diseases. Biotechnol Lett 2014; 36:1407–1420 [View Article][PubMed]
    [Google Scholar]
  9. White FF, Yang B. Host and pathogen factors controlling the rice-Xanthomonas oryzae interaction. Plant Physiol 2009; 150:1677–1686 [View Article][PubMed]
    [Google Scholar]
  10. Brum JR, Ignacio-Espinoza JC, Roux S, Doulcier G, Acinas SG et al. Ocean plankton. Patterns and ecological drivers of ocean viral communities. Science 2015; 348:1261498 [View Article][PubMed]
    [Google Scholar]
  11. Young R, Gill JJ. Phage therapy redux–what is to be done?. Science 2015; 350:1163–1164 [View Article][PubMed]
    [Google Scholar]
  12. Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H et al. Alternatives to antibiotics-a pipeline portfolio review. Lancet Infect Dis 2016; 16:239–251 [View Article][PubMed]
    [Google Scholar]
  13. Reardon S. Phage therapy gets revitalized. Nature 2014; 510:15–16 [View Article][PubMed]
    [Google Scholar]
  14. Abdulamir AS, Jassim SA, Abu Bakar F. Novel approach of using a cocktail of designed bacteriophages against gut pathogenic E. coli for bacterial load biocontrol. Ann Clin Microbiol Antimicrob 2014; 13:39 [View Article][PubMed]
    [Google Scholar]
  15. Endersen L, O'Mahony J, Hill C, Ross RP, McAuliffe O et al. Phage therapy in the food industry. Annu Rev Food Sci Technol 2014; 5:327–349 [View Article][PubMed]
    [Google Scholar]
  16. Stone R. Bacteriophage therapy. Food and agriculture: testing grounds for phage therapy. Science 2002; 298:730 [View Article][PubMed]
    [Google Scholar]
  17. Nakai T, Park SC. Bacteriophage therapy of infectious diseases in aquaculture. Res Microbiol 2002; 153:13–18 [View Article][PubMed]
    [Google Scholar]
  18. Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L et al. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 2010; 11:69–86 [View Article][PubMed]
    [Google Scholar]
  19. Chae JC, Hung NB, Yu SM, Lee HK, Lee YH. Diversity of bacteriophages infecting Xanthomonas oryzae pv. oryzae in paddy fields and its potential to control bacterial leaf blight of rice. J Microbiol Biotechnol 2014; 24:740–747 [View Article][PubMed]
    [Google Scholar]
  20. Kuo TT, Huang TC, Chow TY. A filamentous bacteriophage from Xanthomonas oryzae. Virology 1969; 39:548–555 [View Article][PubMed]
    [Google Scholar]
  21. Kuo TT, Huang TC, Wu RY, Chen CP. Phage Xp12 of Xanthomonas oryzae (Uyeda et Ishiyama) Dowson. Can J Microbiol 1968; 14:1139–1142 [View Article][PubMed]
    [Google Scholar]
  22. Yuzenkova J, Nechaev S, Berlin J, Rogulja D, Kuznedelov K et al. Genome of Xanthomonas oryzae bacteriophage Xp10: an odd T-odd phage. J Mol Biol 2003; 330:735–748 [View Article][PubMed]
    [Google Scholar]
  23. Inoue Y, Matsuura T, Ohara T, Azegami K. Sequence analysis of the genome of OP2, a lytic bacteriophage of Xanthomonas oryzae pv. oryzae. J Gen Plant Pathol 2006; 72:104–110 [View Article]
    [Google Scholar]
  24. Lee CN, Hu RM, Chow TY, Lin JW, Chen HY et al. Comparison of genomes of three Xanthomonas oryzae bacteriophages. BMC Genomics 2007; 8:442 [View Article][PubMed]
    [Google Scholar]
  25. Lee CN, Tseng TT, Chang HC, Lin JW, Weng SF. Genomic sequence of temperate phage Smp131 of Stenotrophomonas maltophilia that has similar prophages in xanthomonads. BMC Microbiol 2014; 14:17 [View Article][PubMed]
    [Google Scholar]
  26. Kuo TT, Tu J. Enzymatic synthesis of deoxy-5-methyl-cytidylic acid replacing deoxycytidylic acid in Xanthomonas oryzae phage Xp12DNA. Nature 1976; 263:615 [View Article][PubMed]
    [Google Scholar]
  27. Lee CN, Lin JW, Chow TY, Tseng YH, Weng SF. A novel lysozyme from Xanthomonas oryzae phage varphiXo411 active against Xanthomonas and Stenotrophomonas. Protein Expr Purif 2006; 50:229–237 [View Article][PubMed]
    [Google Scholar]
  28. Goto M. Interrelationship between colony type, phage susceptibility and virulence in Xanthomonas oryzae. J Appl Bacteriol 1972; 35:505–515 [View Article][PubMed]
    [Google Scholar]
  29. Kuo TT, Chow TY, Lin YT. A new thymidylate biosynthesis in Xanthomonas oryzae infected by phage Xp 12. Virology 1982; 118:293–300 [View Article][PubMed]
    [Google Scholar]
  30. Liao YD, Kuo TT. Loss of sigma-factor of RNA polymerase of Xanthomonas campestris pv. oryzae during phage Xp10 infection. J Biol Chem 1986; 261:13714–13719[PubMed]
    [Google Scholar]
  31. Lin SH, Liu JS, Yang BC, Kuo TT. Disassociation of sigma subunit from RNA polymerase of Xanthomonas oryzae pv. oryzae by phage Xp10 infection. FEMS Microbiol Lett 1998; 162:9–15[PubMed]
    [Google Scholar]
  32. Kim M, Kim S, Park B, Ryu S. Core lipopolysaccharide-specific phage SSU5 as an auxiliary component of a phage cocktail for Salmonella biocontrol. Appl Environ Microbiol 2014; 80:1026–1034 [View Article][PubMed]
    [Google Scholar]
  33. Li S, Fan H, An X, Fan H, Jiang H et al. Scrutinizing virus genome termini by high-throughput sequencing. PLoS One 2014; 9:e85806 [View Article][PubMed]
    [Google Scholar]
  34. Grose JH, Jensen GL, Burnett SH, Breakwell DP. Genomic comparison of 93 Bacillus phages reveals 12 clusters, 14 singletons and remarkable diversity. BMC Genomics 2014; 15:855 [View Article][PubMed]
    [Google Scholar]
  35. Holmfeldt K, Solonenko N, Shah M, Corrier K, Riemann L et al. Twelve previously unknown phage genera are ubiquitous in global oceans. Proc Natl Acad Sci USA 2013; 110:12798–12803 [View Article][PubMed]
    [Google Scholar]
  36. Hatfull GF, Jacobs-Sera D, Lawrence JG, Pope WH, Russell DA et al. Comparative genomic analysis of 60 Mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J Mol Biol 2010; 397:119–143 [View Article][PubMed]
    [Google Scholar]
  37. Sepúlveda-Robles O, Kameyama L, Guarneros G. High diversity and novel species of Pseudomonas aeruginosa bacteriophages. Appl Environ Microbiol 2012; 78:4510–4515 [View Article][PubMed]
    [Google Scholar]
  38. Oliveira H, Melo LD, Santos SB, Nóbrega FL, Ferreira EC et al. Molecular aspects and comparative genomics of bacteriophage endolysins. J Virol 2013; 87:4558–4570 [View Article][PubMed]
    [Google Scholar]
  39. Sepúlveda-Robles O, Kameyama L, Guarneros G. High diversity and novel species of Pseudomonas aeruginosa bacteriophages. Appl Environ Microbiol 2012; 78:4510–4515 [View Article][PubMed]
    [Google Scholar]
  40. Fujiwara A, Fujisawa M, Hamasaki R, Kawasaki T, Fujie M et al. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl Environ Microbiol 2011; 77:4155–4162 [View Article][PubMed]
    [Google Scholar]
  41. Yang B, Bogdanove A. Inoculation and virulence assay for bacterial blight and bacterial leaf streak of rice. Methods Mol Biol 2013; 956:249–255 [View Article][PubMed]
    [Google Scholar]
  42. Liu H, Yang W, Hu B, Liu F. Virulence analysis and race classification of Xanthomonas oryzae pv. oryzae in China. J Phytopathology 2007; 155:129–135 [View Article]
    [Google Scholar]
  43. Salzberg SL, Sommer DD, Schatz MC, Phillippy AM, Rabinowicz PD et al. Genome sequence and rapid evolution of the rice pathogen Xanthomonas oryzae pv. oryzae PXO99A. BMC Genomics 2008; 9:204 [View Article][PubMed]
    [Google Scholar]
  44. Fujiwara A, Fujisawa M, Hamasaki R, Kawasaki T, Fujie M et al. Biocontrol of Ralstonia solanacearum by treatment with lytic bacteriophages. Appl Environ Microbiol 2011; 77:4155–4162 [View Article][PubMed]
    [Google Scholar]
  45. van Twest R, Kropinski AM. Bacteriophage enrichment from water and soil. Methods Mol Biol 2009; 501:15–21 [View Article][PubMed]
    [Google Scholar]
  46. Hyman P, Abedon ST. Practical methods for determining phage growth parameters. Methods Mol Biol 2009; 501:175–202 [View Article][PubMed]
    [Google Scholar]
  47. Santos MA. An improved method for the small scale preparation of bacteriophage DNA based on phage precipitation by zinc chloride. Nucleic Acids Res 1991; 19:5442 [View Article][PubMed]
    [Google Scholar]
  48. Xie Y, Wu G, Tang J, Luo R, Patterson J et al. SOAPdenovo-Trans: de novo transcriptome assembly with short RNA-Seq reads. Bioinformatics 2014; 30:1660–1666 [View Article][PubMed]
    [Google Scholar]
  49. Aziz RK, Bartels D, Best AA, Dejongh M, Disz T et al. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 2008; 9:75 [View Article][PubMed]
    [Google Scholar]
  50. Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res 2005; 33:W686–W689 [View Article][PubMed]
    [Google Scholar]
  51. Tamura K, Peterson D, Peterson N, Stecher G, Nei M et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  52. Krumsiek J, Arnold R, Rattei T. Gepard: a rapid and sensitive tool for creating dotplots on genome scale. Bioinformatics 2007; 23:1026–1028 [View Article][PubMed]
    [Google Scholar]
  53. Richter M, Rosselló-Móra R. Shifting the genomic gold standard for the prokaryotic species definition. Proc Natl Acad Sci USA 2009; 106:19126–19131 [View Article][PubMed]
    [Google Scholar]
  54. Sullivan MJ, Petty NK, Beatson SA. Easyfig: a genome comparison visualizer. Bioinformatics 2011; 27:1009–1010 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001133
Loading
/content/journal/jgv/10.1099/jgv.0.001133
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error