1887

Abstract

The emergence and rapid spread of Zika virus (ZIKV) in the Americas has prompted the development of in vitro and in vivo models to understand several aspects of ZIKV biology and boost the development of vaccines and antivirals. In vitro model studies include reverse genetics systems, two-dimensional (2D) cell models, such as primary cells and cell lines, and ex vivo three-dimensional (3D) models derived from skin, brain and placenta. While these models are cost-effective and allow rigorous control of experimental variables, they do not always recapitulate in vivo scenarios. Thus, a number of in vivo models have been developed, including mosquitoes (Aedes sp. and Culex sp.), embryonated chicken eggs, immunocompetent and immunodeficient mice strains, hamsters, guinea pigs, conventional swine and non-human primates. In this review, we summarize the main research systems that have been developed in recent years and discuss their advantages, limitations and main applications.

Keyword(s): animal models , ex vivo , in vitro , in vivo and ZIKV
Loading

Article metrics loading...

/content/journal/jgv/10.1099/jgv.0.001153
2018-10-16
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/99/12/1529.html?itemId=/content/journal/jgv/10.1099/jgv.0.001153&mimeType=html&fmt=ahah

References

  1. Musso D. Zika virus transmission from French polynesia to Brazil. Emerg Infect Dis 2015; 21:1887 [View Article][PubMed]
    [Google Scholar]
  2. Gatherer D, Kohl A. Zika virus: a previously slow pandemic spreads rapidly through the Americas. J Gen Virol 2016; 97:269–273 [View Article][PubMed]
    [Google Scholar]
  3. Mlakar J, Korva M, Tul N, Popović M, Poljšak-Prijatelj M et al. Zika virus associated with microcephaly. N Engl J Med Overseas Ed 2016; 374:951–958 [View Article]
    [Google Scholar]
  4. WHO 2017; Situation report: Zika virus, microcephaly and Guillain-Barré syndrome. www.who.int/emergencies/zika-virus/situation-report/10-march-2017/en/ [accessed 1 August 2018]
  5. PAHO 2018; Zika cumulative cases. www.paho.org/hq/index.php?option=com_content&view=article&id=12390&Itemid=42090&lang=en [accessed 1 August 2018]
  6. Göertz GP, Abbo SR, Fros JJ, Pijlman GP. Functional RNA during Zika virus infection. Virus Res 2018; 254:41–53 [View Article][PubMed]
    [Google Scholar]
  7. Donald CL, Brennan B, Cumberworth SL, Rezelj VV, Clark JJ et al. Full genome sequence and sfRNA interferon antagonist activity of Zika virus from Recife, Brazil. PLoS Negl Trop Dis 2016; 10:e0005048 [View Article][PubMed]
    [Google Scholar]
  8. Akiyama BM, Laurence HM, Massey AR, Costantino DA, Xie X et al. Zika virus produces noncoding RNAs using a multi-pseudoknot structure that confounds a cellular exonuclease. Science 2016; 354:1148–1152 [View Article][PubMed]
    [Google Scholar]
  9. Rodriguez-Morales AJ, Bandeira AC, Franco-Paredes C. The expanding spectrum of modes of transmission of Zika virus: a global concern. Ann Clin Microbiol Antimicrob 2016; 15:13 [View Article][PubMed]
    [Google Scholar]
  10. Meneses J, Ishigami AC, de Mello LM, de Albuquerque LL, de Brito CAA et al. Lessons learned at the epicenter of Brazil's congenital zika epidemic: evidence from 87 confirmed cases. Clin Infect Dis 2017; 64:1302–1308 [View Article][PubMed]
    [Google Scholar]
  11. da Silva IRF, Frontera JA, Bispo de Filippis AM, Nascimento O. Neurologic complications associated with the zika virus in Brazilian adults. JAMA Neurol 2017; 74:1190–1198 [View Article][PubMed]
    [Google Scholar]
  12. Furtado JM, Espósito DL, Klein TM, Teixeira-Pinto T, da Fonseca BA. Uveitis associated with Zika virus infection. N Engl J Med Overseas Ed 2016; 375:394–396 [View Article]
    [Google Scholar]
  13. Brito Ferreira ML, Antunes de Brito CA, Moreira ÁJP, de Morais Machado , Henriques-Souza A et al. Guillain-Barré syndrome, acute disseminated encephalomyelitis and encephalitis associated with zika virus infection in Brazil: detection of viral RNA and isolation of virus during late infection. Am J Trop Med Hyg 2017; 97:1405–1409 [View Article][PubMed]
    [Google Scholar]
  14. Hamel R, Dejarnac O, Wichit S, Ekchariyawat P, Neyret A et al. Biology of zika virus infection in human skin cells. J Virol 2015; 89:8880–8896 [View Article][PubMed]
    [Google Scholar]
  15. Foo SS, Chen W, Chan Y, Bowman JW, Chang LC et al. Asian Zika virus strains target CD14+ blood monocytes and induce M2-skewed immunosuppression during pregnancy. Nat Microbiol 2017; 2:1558–1570 [View Article][PubMed]
    [Google Scholar]
  16. Michlmayr D, Andrade P, Gonzalez K, Balmaseda A, Harris E. CD14+CD16+ monocytes are the main target of Zika virus infection in peripheral blood mononuclear cells in a paediatric study in Nicaragua. Nat Microbiol 2017; 2:1462–1470 [View Article][PubMed]
    [Google Scholar]
  17. Dejnirattisai W, Supasa P, Wongwiwat W, Rouvinski A, Barba-Spaeth G et al. Dengue virus sero-cross-reactivity drives antibody-dependent enhancement of infection with zika virus. Nat Immunol 2016; 17:1102–1108 [View Article][PubMed]
    [Google Scholar]
  18. Bowen JR, Quicke KM, Maddur MS, O'Neal JT, Mcdonald CE et al. Zika virus antagonizes type I interferon responses during infection of human dendritic cells. PLoS Pathog 2017; 13:e1006164 [View Article][PubMed]
    [Google Scholar]
  19. Siemann DN, Strange DP, Maharaj PN, Shi PY, Verma S et al. Zika virus infects human sertoli cells and modulates the integrity of the in vitro blood-testis barrier model. J Virol 2017; 91:e00623-17 [View Article][PubMed]
    [Google Scholar]
  20. Tabata T, Petitt M, Puerta-Guardo H, Michlmayr D, Wang C et al. Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission. Cell Host Microbe 2016; 20:155–166 [View Article]
    [Google Scholar]
  21. Jurado KA, Simoni MK, Tang Z, Uraki R, Hwang J et al. Zika virus productively infects primary human placenta-specific macrophages. JCI Insight 2016; 1:e88461 [View Article][PubMed]
    [Google Scholar]
  22. Aagaard KM, Lahon A, Suter MA, Arya RP, Seferovic MD et al. Primary human placental trophoblasts are permissive for zika virus (ZIKV) replication. Sci Rep 2017; 7:41389 [View Article]
    [Google Scholar]
  23. Pagani I, Ghezzi S, Ulisse A, Rubio A, Turrini F et al. Human endometrial stromal cells are highly permissive to productive infection by zika virus. Sci Rep 2017; 7:44286 [View Article]
    [Google Scholar]
  24. Bayer A, Lennemann NJ, Ouyang Y, Bramley JC, Morosky S et al. Type III interferons produced by human placental trophoblasts confer protection against zika virus infection. Cell Host Microbe 2016; 19:705–712 [View Article]
    [Google Scholar]
  25. Cumberworth SL, Barrie JA, Cunningham ME, de Figueiredo DPG, Schultz V et al. Zika virus tropism and interactions in myelinating neural cell cultures: CNS cells and myelin are preferentially affected. Acta Neuropathol Commun 2017; 5:50 [View Article][PubMed]
    [Google Scholar]
  26. Hamel R, Ferraris P, Wichit S, Diop F, Talignani L et al. African and Asian Zika virus strains differentially induce early antiviral responses in primary human astrocytes. Infect Genet Evol 2017; 49:134–137 [View Article][PubMed]
    [Google Scholar]
  27. Lum FM, Low DK, Fan Y, Tan JJ, Lee B et al. Zika virus infects human fetal brain microglia and induces inflammation. Clin Infect Dis 2017; 64:914–920 [View Article][PubMed]
    [Google Scholar]
  28. McGrath EL, Rossi SL, Gao J, Widen SG, Grant AC et al. Differential responses of human fetal brain neural stem cells to zika virus infection. Stem Cell Reports 2017; 8:715–727 [View Article][PubMed]
    [Google Scholar]
  29. Barreto-Vieira DF, Barth OM, Silva MA, Santos CC, Santos AS et al. Ultrastructure of Zika virus particles in cell cultures. Mem Inst Oswaldo Cruz 2016; 111:532–534 [View Article][PubMed]
    [Google Scholar]
  30. Chan JF, Yip CC, Tsang JO, Tee KM, Cai JP et al. Differential cell line susceptibility to the emerging Zika virus: implications for disease pathogenesis, non-vector-borne human transmission and animal reservoirs. Emerg Microbes Infect 2016; 5:e93 [View Article][PubMed]
    [Google Scholar]
  31. Bierle CJ, Fernández-Alarcón C, Hernandez-Alvarado N, Zabeli JC, Janus BC et al. Assessing Zika virus replication and the development of Zika-specific antibodies after a mid-gestation viral challenge in guinea pigs. PLoS One 2017; 12:e0187720 [View Article][PubMed]
    [Google Scholar]
  32. de Carvalho OV, Félix DM, de Mendonça LR, de Araújo C, de Oliveira Franca RF et al. The thiopurine nucleoside analogue 6-methylmercaptopurine riboside (6MMPr) effectively blocks Zika virus replication. Int J Antimicrob Agents 2017; 50:718–725 [View Article][PubMed]
    [Google Scholar]
  33. Luo H, Winkelmann ER, Fernandez-Salas I, Li L, Mayer SV et al. Zika, dengue and yellow fever viruses induce differential anti-viral immune responses in human monocytic and first trimester trophoblast cells. Antiviral Res 2018; 151:55–62 [View Article][PubMed]
    [Google Scholar]
  34. Tricarico PM, Caracciolo I, Crovella S, D'Agaro P. Zika virus induces inflammasome activation in the glial cell line U87-MG. Biochem Biophys Res Commun 2017; 492:597–602 [View Article][PubMed]
    [Google Scholar]
  35. Varjak M, Donald CL, Mottram TJ, Sreenu VB, Merits A et al. Characterization of the Zika virus induced small RNA response in Aedes aegypti cells. PLoS Negl Trop Dis 2017; 11:e0006010 [View Article][PubMed]
    [Google Scholar]
  36. Barreto-Vieira DF, Jácome FC, da Silva MAN, Caldas GC, de Filippis AMB et al. Structural investigation of C6/36 and Vero cell cultures infected with a Brazilian Zika virus. PLoS One 2017; 12:e0184397 [View Article][PubMed]
    [Google Scholar]
  37. Xin QL, Deng CL, Chen X, Wang J, Wang SB et al. Quantitative proteomic analysis of mosquito C6/36 cells reveals host proteins involved in zika virus infection. J Virol 2017; 91:e00554-17 [View Article][PubMed]
    [Google Scholar]
  38. Offerdahl DK, Dorward DW, Hansen BT, Bloom ME. Cytoarchitecture of Zika virus infection in human neuroblastoma and Aedes albopictus cell lines. Virology 2017; 501:54–62 [View Article]
    [Google Scholar]
  39. Schultz MJ, Isern S, Michael SF, Corley RB, Connor JH et al. Variable inhibition of zika virus replication by different wolbachia strains in mosquito cell cultures. J Virol 2017; 91:e00339-17 [View Article][PubMed]
    [Google Scholar]
  40. Pena L, Vincent AL, Loving CL, Henningson JN, Lager KM et al. Strain-dependent effects of PB1-F2 of triple-reassortant H3N2 influenza viruses in swine. J Gen Virol 2012; 93:2204–2214 [View Article][PubMed]
    [Google Scholar]
  41. Qian X, Jacob F, Song MM, Nguyen HN, Song H et al. Generation of human brain region-specific organoids using a miniaturized spinning bioreactor. Nat Protoc 2018; 13:565–580 [View Article][PubMed]
    [Google Scholar]
  42. Lancaster MA, Knoblich JA. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 2014; 345:1247125 [View Article][PubMed]
    [Google Scholar]
  43. Yin X, Mead BE, Safaee H, Langer R, Karp JM et al. Engineering stem cell organoids. Cell Stem Cell 2016; 18:25–38 [View Article][PubMed]
    [Google Scholar]
  44. Qian X, Nguyen HN, Song MM, Hadiono C, Ogden SC et al. Brain-region-specific organoids using mini-bioreactors for modeling ZIKV exposure. Cell 2016; 165:1238–1254 [View Article][PubMed]
    [Google Scholar]
  45. Dang J, Tiwari SK, Lichinchi G, Qin Y, Patil VS et al. Zika virus depletes neural progenitors in human cerebral organoids through activation of the innate immune receptor TLR3. Cell Stem Cell 2016; 19:258–265 [View Article][PubMed]
    [Google Scholar]
  46. Garcez PP, Loiola EC, Madeiro da Costa R, Higa LM, Trindade P et al. Zika virus impairs growth in human neurospheres and brain organoids. Science 2016; 352:816–818 [View Article]
    [Google Scholar]
  47. Cugola FR, Fernandes IR, Russo FB, Freitas BC, Dias JL et al. The Brazilian Zika virus strain causes birth defects in experimental models. Nature 2016; 534:267–271 [View Article][PubMed]
    [Google Scholar]
  48. Nowakowski TJ, Pollen AA, di Lullo E, Sandoval-Espinosa C, Bershteyn M et al. Expression analysis highlights AXL as a candidate zika virus entry receptor in neural stem cells. Cell Stem Cell 2016; 18:591–596 [View Article][PubMed]
    [Google Scholar]
  49. Wells MF, Salick MR, Wiskow O, Ho DJ, Worringer KA et al. Genetic ablation of AXL does not protect human neural progenitor cells and cerebral organoids from zika virus infection. Cell Stem Cell 2016; 19:703–708 [View Article][PubMed]
    [Google Scholar]
  50. Tang H, Hammack C, Ogden SC, Wen Z, Qian X et al. Zika virus infects human cortical neural progenitors and attenuates their growth. Cell Stem Cell 2016; 18:587–590 [View Article][PubMed]
    [Google Scholar]
  51. Weisblum Y, Oiknine-Djian E, Vorontsov OM, Haimov-Kochman R, Zakay-Rones Z et al. Zika virus infects early- and midgestation human maternal decidual tissues, inducing distinct innate tissue responses in the maternal-fetal interface. J Virol 2017; 91:e01905-16 [View Article][PubMed]
    [Google Scholar]
  52. Tabata T, Petitt M, Puerta-Guardo H, Michlmayr D, Wang C et al. Zika virus targets different primary human placental cells, suggesting two routes for vertical transmission. Cell Host Microbe 2016; 20:155–166 [View Article][PubMed]
    [Google Scholar]
  53. Ruggli N, Rice CM. Functional cDNA clones of the Flaviviridae: strategies and applications. Adv Virus Res 1999; 53:183–207
    [Google Scholar]
  54. Aubry F, Nougairède A, Gould EA, de Lamballerie X. Flavivirus reverse genetic systems, construction techniques and applications: a historical perspective. Antiviral Res 2015; 114:67–85 [View Article][PubMed]
    [Google Scholar]
  55. Shan C, Xie X, Muruato AE, Rossi SL, Roundy CM et al. An infectious cDNA clone of zika virus to study viral virulence, mosquito transmission, and antiviral inhibitors. Cell Host Microbe 2016; 19:891–900 [View Article]
    [Google Scholar]
  56. Tsetsarkin KA, Kenney H, Chen R, Liu G, Manukyan H et al. A full-length infectious cDNA clone of zika virus from the 2015 epidemic in brazil as a genetic platform for studies of virus-host interactions and vaccine development. MBio 2016; 7:e01114-16 [View Article][PubMed]
    [Google Scholar]
  57. Weger-Lucarelli J, Duggal NK, Bullard-Feibelman K, Veselinovic M, Romo H et al. Development and characterization of recombinant virus generated from a new world zika virus infectious clone. J Virol 2017; 91:e01765-16 [View Article][PubMed]
    [Google Scholar]
  58. Widman DG, Young E, Yount BL, Plante KS, Gallichotte EN et al. A reverse genetics platform that spans the zika virus family tree. MBio 2017; 8:e02014-16 [View Article][PubMed]
    [Google Scholar]
  59. Atieh T, Nougairède A, Klitting R, Aubry F, Failloux AB et al. New reverse genetics and transfection methods to rescue arboviruses in mosquito cells. Sci Rep 2017; 7:13983 [View Article][PubMed]
    [Google Scholar]
  60. Liu ZY, Yu JY, Huang XY, Fan H, Li XF et al. Characterization of cis-acting RNA elements of zika virus by using a self-splicing ribozyme-dependent infectious clone. J Virol 2017; 91:e00484-17 [View Article][PubMed]
    [Google Scholar]
  61. Mutso M, Saul S, Rausalu K, Susova O, Žusinaite E et al. Reverse genetic system, genetically stable reporter viruses and packaged subgenomic replicon based on a Brazilian Zika virus isolate. J Gen Virol 2017; 98:2712–2724 [View Article][PubMed]
    [Google Scholar]
  62. Atieh T, Baronti C, de Lamballerie X, Nougairède A. Simple reverse genetics systems for Asian and African Zika viruses. Sci Rep 2016; 6:39384 [View Article][PubMed]
    [Google Scholar]
  63. Yang Y, Shan C, Zou J, Muruato AE, Bruno DN et al. A cDNA clone-launched platform for high-yield production of inactivated zika vaccine. EBioMedicine 2017; 17:145–156 [View Article]
    [Google Scholar]
  64. Setoh YX, Prow NA, Peng N, Hugo LE, Devine G et al. De Novo generation and characterization of new zika virus isolate using sequence data from a microcephaly case. mSphere 2017; 2:e00190-17 [View Article][PubMed]
    [Google Scholar]
  65. Schwarz MC, Sourisseau M, Espino MM, Gray ES, Chambers MT et al. Rescue of the 1947 zika virus prototype strain with a cytomegalovirus promoter-driven cDNA clone. mSphere 2016; 1:e00246-16 [View Article][PubMed]
    [Google Scholar]
  66. Gadea G, Bos S, Krejbich-Trotot P, Clain E, Viranaicken W et al. A robust method for the rapid generation of recombinant Zika virus expressing the GFP reporter gene. Virology 2016; 497:157–162 [View Article]
    [Google Scholar]
  67. Yuan L, Huang XY, Liu ZY, Zhang F, Zhu XL et al. A single mutation in the prM protein of Zika virus contributes to fetal microcephaly. Science 2017; 358:933–936 [View Article][PubMed]
    [Google Scholar]
  68. Zhao F, Xu Y, Lavillette D, Zhong J, Zou G et al. Negligible contribution of M2634V substitution to ZIKV pathogenesis in AG6 mice revealed by a bacterial promoter activity reduced infectious clone. Sci Rep 2018; 8:10491 [View Article]
    [Google Scholar]
  69. Jq L, Deng CL, Gu D, Li X, Shi L et al. Development of a replicon cell line-based high throughput antiviral assay for screening inhibitors of Zika virus. Antiviral Res 2018; 150:148–154
    [Google Scholar]
  70. Xie X, Zou J, Shan C, Yang Y, Kum DB et al. Zika virus replicons for drug discovery. EBioMedicine 2016; 12:156–160 [View Article]
    [Google Scholar]
  71. Aliota MT, Caine EA, Walker EC, Larkin KE, Camacho E et al. Characterization of lethal zika virus infection in AG129 mice. PLoS neglected tropical diseases 2016; 10:e0004682
    [Google Scholar]
  72. Miner JJ, Cao B, Govero J, Smith AM, Fernandez E et al. Zika virus infection during pregnancy in mice causes placental damage and fetal demise. Cell 2016; 165:1081–1091
    [Google Scholar]
  73. Rossi SL, Tesh RB, Azar SR, Muruato AE, Hanley KA et al. Characterization of a novel murine model to study zika virus. Am J Trop Med Hyg 2016; 94:1362–1369 [View Article][PubMed]
    [Google Scholar]
  74. Mlakar J, Korva M, Tul N, Popović M, Poljšak-Prijatelj M et al. Zika virus associated with microcephaly. N Engl J Med Overseas Ed 2016; 374:951–958 [View Article]
    [Google Scholar]
  75. Grant A, Ponia SS, Tripathi S, Balasubramaniam V, Miorin L et al. Zika virus targets human STAT2 to inhibit type I interferon signaling. Cell Host Microbe 2016; 19:882–890 [View Article]
    [Google Scholar]
  76. Lazear HM, Govero J, Smith AM, Platt DJ, Fernandez E et al. A mouse model of zika virus pathogenesis. Cell Host Microbe 2016; 19:720–730 [View Article]
    [Google Scholar]
  77. Smith DR, Hollidge B, Daye S, Zeng X, Blancett C et al. Neuropathogenesis of zika virus in a highly susceptible immunocompetent mouse model after antibody blockade of type I interferon. PLoS Negl Trop Dis 2017; 11:e0005296 [View Article][PubMed]
    [Google Scholar]
  78. Bullard-Feibelman KM, Govero J, Zhu Z, Salazar V, Veselinovic M et al. The FDA-approved drug sofosbuvir inhibits Zika virus infection. Antiviral research 2017; 137:134–140
    [Google Scholar]
  79. Zhao H, Fernandez E, Dowd KA, Speer SD, Platt DJ et al. Structural basis of zika virus-specific antibody protection. Cell 2016; 166:1016–1027
    [Google Scholar]
  80. Ferreira AC, Zaverucha-do-Valle C, Reis PA, Barbosa-Lima G, Vieira YR et al. Sofosbuvir protects Zika virus-infected mice from mortality, preventing short- and long-term sequelae. Sci Rep 2017; 7:9409 [View Article][PubMed]
    [Google Scholar]
  81. Chan JF, Zhang AJ, Chan CC, Yip CC, Mak WW et al. Zika virus infection in dexamethasone-immunosuppressed mice demonstrating disseminated infection with multi-organ involvement including orchitis effectively treated by recombinant type I interferons. EBioMedicine 2016; 14:112–122 [View Article][PubMed]
    [Google Scholar]
  82. Elong Ngono A, Vizcarra EA, Tang WW, Sheets N, Joo Y et al. Mapping and role of the CD8+ T cell response during primary zika virus infection in mice. Cell Host Microbe 2017; 21:35–46 [View Article][PubMed]
    [Google Scholar]
  83. Hutchings PR, Varey AM, Cooke A. Immunological defects in SJL mice. Immunology 1986; 59:445–450[PubMed]
    [Google Scholar]
  84. Jain S, Chen J, Nicolae A, Wang H, Shin DM et al. IL-21-driven neoplasms in SJL mice mimic some key features of human angioimmunoblastic T-cell lymphoma. The American journal of pathology 2015; 185:3102–3114
    [Google Scholar]
  85. Ky W, Zuo GL, Xf L, Ye Q, Deng YQ et al. Vertical transmission of Zika virus targeting the radial glial cells affects cortex development of offspring mice. Cell research 2016; 26:645–654
    [Google Scholar]
  86. Duggal NK, Ritter JM, Mcdonald EM, Romo H, Guirakhoo F et al. Differential neurovirulence of african and asian genotype zika virus isolates in outbred immunocompetent mice. Am J Trop Med Hyg 2017; 97:1410–1417 [View Article][PubMed]
    [Google Scholar]
  87. Dowall SD, Graham VA, Rayner E, Atkinson B, Hall G et al. A susceptible mouse model for zika virus infection. PLoS Negl Trop Dis 2016; 10:e0004658 [View Article][PubMed]
    [Google Scholar]
  88. Szaba FM, Tighe M, Kummer LW, Lanzer KG, Ward JM et al. Zika virus infection in immunocompetent pregnant mice causes fetal damage and placental pathology in the absence of fetal infection. PLoS Pathog 2018; 14:e1006994 [View Article][PubMed]
    [Google Scholar]
  89. Li C, Xu D, Ye Q, Hong S, Jiang Y et al. Zika virus disrupts neural progenitor development and leads to microcephaly in mice. Cell Stem Cell 2016; 19:672 [View Article][PubMed]
    [Google Scholar]
  90. Gorman MJ, Caine EA, Zaitsev K, Begley MC, Weger-Lucarelli J et al. An immunocompetent mouse model of zika virus infection. Cell Host Microbe 2018; 23:672–685 [View Article][PubMed]
    [Google Scholar]
  91. Fernandes NC, Nogueira JS, Réssio RA, Cirqueira CS, Kimura LM et al. Experimental Zika virus infection induces spinal cord injury and encephalitis in newborn Swiss mice. Exp Toxicol Pathol 2017; 69:63–71 [View Article][PubMed]
    [Google Scholar]
  92. Xavier-Neto J, Carvalho M, Pascoalino BD, Cardoso AC, Costa ÂM et al. Hydrocephalus and arthrogryposis in an immunocompetent mouse model of ZIKA teratogeny: a developmental study. PLoS Negl Trop Dis 2017; 11:e0005363 [View Article][PubMed]
    [Google Scholar]
  93. Yockey LJ, Varela L, Rakib T, Khoury-Hanold W, Fink SL et al. Vaginal exposure to zika virus during pregnancy leads to fetal brain infection. Cell 2016; 166:1247–1256 [View Article][PubMed]
    [Google Scholar]
  94. Shan C, Muruato AE, Nunes BTD, Luo H, Xie X et al. A live-attenuated Zika virus vaccine candidate induces sterilizing immunity in mouse models. Nat Med 2017; 23:763–767 [View Article][PubMed]
    [Google Scholar]
  95. Chattopadhyay A, Aguilar PV, Bopp NE, Yarovinsky TO, Weaver SC et al. A recombinant virus vaccine that protects against both Chikungunya and Zika virus infections. Vaccine 2018; 36:3894–3900
    [Google Scholar]
  96. Yu Y, Deng YQ, Zou P, Wang Q, Dai Y et al. A peptide-based viral inactivator inhibits Zika virus infection in pregnant mice and fetuses. Nat Commun 2017; 8:15672 [View Article][PubMed]
    [Google Scholar]
  97. Li C, Zhu X, Ji X, Quanquin N, Deng YQ et al. Chloroquine, a FDA-approved drug, prevents zika virus infection and its associated congenital microcephaly in mice. EBioMedicine 2017; 24:189–194 [View Article][PubMed]
    [Google Scholar]
  98. Meier KC, Gardner CL, Khoretonenko MV, Klimstra WB, Ryman KD. A mouse model for studying viscerotropic disease caused by yellow fever virus infection. PLoS pathogens 2009; 5:e1000614
    [Google Scholar]
  99. Zmurko J, Marques RE, Schols D, Verbeken E, Kaptein SJ et al. The viral polymerase inhibitor 7-Deaza-2'-C-methyladenosine is a potent inhibitor of in vitro zika virus replication and delays disease progression in a robust mouse infection model. PLoS Negl Trop Dis 2016; 10:e0004695 [View Article][PubMed]
    [Google Scholar]
  100. Li H, Saucedo-Cuevas L, Regla-Nava JA, Chai G, Sheets N et al. Zika virus infects neural progenitors in the adult mouse brain and alters proliferation. Cell Stem Cell 2016; 19:593–598 [View Article][PubMed]
    [Google Scholar]
  101. Kumar A, Hou S, Airo AM, Limonta D, Mancinelli V et al. Zika virus inhibits type-I interferon production and downstream signaling. EMBO Rep 2016; 17:1766–1775 [View Article][PubMed]
    [Google Scholar]
  102. Tripathi S, Balasubramaniam VR, Brown JA, Mena I, Grant A et al. A novel Zika virus mouse model reveals strain specific differences in virus pathogenesis and host inflammatory immune responses. PLoS Pathog 2017; 13:e1006258 [View Article][PubMed]
    [Google Scholar]
  103. Shresta S, Kyle JL, Snider HM, Basavapatna M, Beatty PR et al. Interferon-dependent immunity is essential for resistance to primary dengue virus infection in mice, whereas T- and B-cell-dependent immunity are less critical. Journal of virology 2004; 78:2701–2710
    [Google Scholar]
  104. Jurado KA, Yockey LJ, Wong PW, Lee S, Huttner AJ et al. Antiviral CD8 T cells induce Zika-virus-associated paralysis in mice. Nat Microbiol 2018; 3:141–147 [View Article][PubMed]
    [Google Scholar]
  105. Winkler CW, Myers LM, Woods TA, Messer RJ, Carmody AB et al. Adaptive immune responses to zika virus are important for controlling virus infection and preventing infection in brain and testes. J Immunol 2017; 198:3526–3535
    [Google Scholar]
  106. Govero J, Esakky P, Scheaffer SM, Fernandez E, Drury A et al. Zika virus infection damages the testes in mice. Nature 2016; 540:438–442
    [Google Scholar]
  107. Ma W, Li S, Ma S, Jia L, Zhang F et al. Zika virus causes testis damage and leads to male infertility in mice. Cell 2016; 167:1511–1524 [View Article][PubMed]
    [Google Scholar]
  108. Tang WW, Young MP, Mamidi A, Regla-Nava JA, Kim K et al. A mouse model of zika virus sexual transmission and vaginal viral replication. Cell reports 2016; 17:3091–3098
    [Google Scholar]
  109. Davey MG, Tickle C. The chicken as a model for embryonic development. Cytogenet Genome Res 2007; 117:231–239 [View Article][PubMed]
    [Google Scholar]
  110. Goodfellow FT, Tesla B, Simchick G, Zhao Q, Hodge T et al. Zika virus induced mortality and microcephaly in chicken embryos. Stem Cells Dev 2016; 25:1691–1697 [View Article][PubMed]
    [Google Scholar]
  111. Way JH, Bowen ET, Platt GS. Comparative studies of some African arboviruses in cell culture and in mice. J Gen Virol 1976; 30:123–130 [View Article][PubMed]
    [Google Scholar]
  112. Inouye S, Matsuno S, Tsurukubo Y. "Original antigenic sin" phenomenon in experimental flavivirus infections of guinea pigs: studies by enzyme-linked immunosorbent assay. Microbiol Immunol 1984; 28:569–574 [View Article][PubMed]
    [Google Scholar]
  113. Lee HH, Hong SK, Yoon SH, Jang SJ, Bahk YY et al. Immunogenicity of Japanese encephalitis virus envelope protein by Hyphantria cunea nuclear polyhedrosis virus vector in guinea pig. Appl Biochem Biotechnol 2012; 167:259–269 [View Article][PubMed]
    [Google Scholar]
  114. Labuda M, Jones LD, Williams T, Nuttall PA. Enhancement of tick-borne encephalitis virus transmission by tick salivary gland extracts. Med Vet Entomol 1993; 7:193–196 [View Article][PubMed]
    [Google Scholar]
  115. Hickey AJ. Guinea pig model of infectious disease - viral infections. Curr Drug Targets 2011; 12:1018–1023 [View Article][PubMed]
    [Google Scholar]
  116. Dick GW. Zika virus. II. Pathogenicity and physical properties. Trans R Soc Trop Med Hyg 1952; 46:521–534 [View Article][PubMed]
    [Google Scholar]
  117. Kumar M, Krause KK, Azouz F, Nakano E, Nerurkar VR. A guinea pig model of Zika virus infection. Virol J 2017; 14:75 [View Article][PubMed]
    [Google Scholar]
  118. Deng YQ, Zhang NN, Li XF, Wang YQ, Tian M et al. Intranasal infection and contact transmission of Zika virus in guinea pigs. Nat Commun 2017; 8:1648 [View Article][PubMed]
    [Google Scholar]
  119. Xiao SY, Guzman H, Zhang H, Travassos da Rosa AP, Tesh RB. West Nile virus infection in the golden hamster (Mesocricetus auratus): a model for West Nile encephalitis. Emerg Infect Dis 2001; 7:714–721 [View Article][PubMed]
    [Google Scholar]
  120. Bosco-Lauth A, Mason G, Bowen R. Pathogenesis of Japanese encephalitis virus infection in a golden hamster model and evaluation of flavivirus cross-protective immunity. Am J Trop Med Hyg 2011; 84:727–732 [View Article][PubMed]
    [Google Scholar]
  121. Ragan IK, Blizzard EL, Gordy P, Bowen RA. Investigating the potential role of North American animals as hosts for zika virus. Vector Borne Zoonotic Dis 2017; 17:161–164 [View Article][PubMed]
    [Google Scholar]
  122. Siddharthan V, van Wettere AJ, Li R, Miao J, Wang Z et al. Zika virus infection of adult and fetal STAT2 knock-out hamsters. Virology 2017; 507:89–95 [View Article][PubMed]
    [Google Scholar]
  123. Meurens F, Summerfield A, Nauwynck H, Saif L, Gerdts V. The pig: a model for human infectious diseases. Trends Microbiol 2012; 20:50–57 [View Article][PubMed]
    [Google Scholar]
  124. Darbellay J, Lai K, Babiuk S, Berhane Y, Ambagala A et al. Neonatal pigs are susceptible to experimental Zika virus infection. Emerg Microbes Infect 2017; 6:e6 [View Article][PubMed]
    [Google Scholar]
  125. Darbellay J, Cox B, Lai K, Delgado-Ortega M, Wheler C et al. Zika virus causes persistent infection in porcine conceptuses and may impair health in offspring. EBioMedicine 2017; 25:73–86 [View Article][PubMed]
    [Google Scholar]
  126. Wichgers Schreur PJ, van Keulen L, Anjema D, Kant J, Kortekaas J. Microencephaly in fetal piglets following in utero inoculation of Zika virus. Emerg Microbes Infect 2018; 7:42 [View Article][PubMed]
    [Google Scholar]
  127. Dick GW, Kitchen SF, Haddow AJ. Zika virus. I. Isolations and serological specificity. Trans R Soc Trop Med Hyg 1952; 46:509–520 [View Article][PubMed]
    [Google Scholar]
  128. Dudley DM, Aliota MT, Mohr EL, Weiler AM, Lehrer-Brey G et al. A rhesus macaque model of Asian-lineage Zika virus infection. Nat Commun 2016; 7:12204 [View Article][PubMed]
    [Google Scholar]
  129. Abbink P, Larocca RA, de La Barrera RA, Bricault CA, Moseley ET et al. Protective efficacy of multiple vaccine platforms against Zika virus challenge in rhesus monkeys. Science 2016; 353:1129–1132
    [Google Scholar]
  130. Adams Waldorf KM, Stencel-Baerenwald JE, Kapur RP, Studholme C, Boldenow E et al. Fetal brain lesions after subcutaneous inoculation of Zika virus in a pregnant nonhuman primate. Nature medicine 2016; 22:1256–1259
    [Google Scholar]
  131. Li XF, Dong HL, Huang XY, Qiu YF, Wang HJ et al. Characterization of a 2016 clinical isolate of zika virus in non-human primates. EBioMedicine 2016; 12:170–177 [View Article][PubMed]
    [Google Scholar]
  132. Osuna CE, Lim SY, Deleage C, Griffin BD, Stein D et al. Zika viral dynamics and shedding in rhesus and cynomolgus macaques. Nat Med 2016; 22:1448–1455 [View Article][PubMed]
    [Google Scholar]
  133. Aliota MT, Dudley DM, Newman CM, Mohr EL, Gellerup DD et al. Heterologous protection against Asian zika virus challenge in rhesus macaques. PLoS Negl Trop Dis 2016; 10:e0005168 [View Article][PubMed]
    [Google Scholar]
  134. Koide F, Goebel S, Snyder B, Walters KB, Gast A et al. Development of a zika virus infection model in cynomolgus macaques. Front Microbiol 2016; 7:7 [View Article][PubMed]
    [Google Scholar]
  135. Coffey LL, Pesavento PA, Keesler RI, Singapuri A, Watanabe J et al. Zika virus tissue and blood compartmentalization in acute infection of rhesus macaques. PLoS One 2017; 12:e0171148 [View Article][PubMed]
    [Google Scholar]
  136. Hirsch AJ, Smith JL, Haese NN, Broeckel RM, Parkins CJ et al. Zika virus infection of rhesus macaques leads to viral persistence in multiple tissues. PLoS Pathog 2017; 13:e1006219 [View Article][PubMed]
    [Google Scholar]
  137. Nguyen SM, Antony KM, Dudley DM, Kohn S, Simmons HA et al. Highly efficient maternal-fetal Zika virus transmission in pregnant rhesus macaques. PLoS Pathog 2017; 13:e1006378 [View Article][PubMed]
    [Google Scholar]
  138. Haddow AD, Nalca A, Rossi FD, Miller LJ, Wiley MR et al. High infection rates for adult macaques after intravaginal or intrarectal inoculation with zika virus. Emerg Infect Dis 2017; 23:1274–1281 [View Article][PubMed]
    [Google Scholar]
  139. Newman CM, Dudley DM, Aliota MT, Weiler AM, Barry GL et al. Oropharyngeal mucosal transmission of Zika virus in rhesus macaques. Nat Commun 2017; 8:169 [View Article][PubMed]
    [Google Scholar]
  140. Chiu CY, Sánchez-San Martín C, Bouquet J, Li T, Yagi S et al. Experimental zika virus inoculation in a new world monkey model reproduces key features of the human infection. Sci Rep 2017; 7:17126 [View Article][PubMed]
    [Google Scholar]
  141. Seferovic M, Martín CS, Tardif SD, Rutherford J, Castro ECC et al. Experimental Zika virus infection in the pregnant common marmoset induces spontaneous fetal loss and neurodevelopmental abnormalities. Sci Rep 2018; 8:6851 [View Article][PubMed]
    [Google Scholar]
  142. Silveira ELV, Rogers KA, Gumber S, Amancha P, Xiao P et al. Immune cell dynamics in rhesus macaques infected with a brazilian strain of zika virus. J Immunol 2017; 199:1003–1011
    [Google Scholar]
  143. Martinot AJ, Abbink P, Afacan O, Prohl AK, Bronson R et al. Fetal neuropathology in zika virus-infected pregnant female rhesus monkeys. Cell 2018; 173:1111–1122 [View Article][PubMed]
    [Google Scholar]
  144. Aid M, Abbink P, Larocca RA, Boyd M, Nityanandam R et al. Zika virus persistence in the central nervous system and lymph nodes of rhesus monkeys. Cell 2017; 169:610–620 [View Article][PubMed]
    [Google Scholar]
  145. Shepherd RC, Williams MC. Studies on viruses in East African bats (Chiroptera). 1. Haemagglutination inhibition and circulation of arboviruses. Zoonoses Res 1964; 3:125–139[PubMed]
    [Google Scholar]
  146. Simpson DI, O'Sullivan JP. Studies on arboviruses and bats (Chiroptera) in East Africa. I. Experimental infection of bats and virus transssion attempts in Aedes (Stegomyia) aegypti (Linnaeus). Ann Trop Med Parasitol 1968; 62:422–431[PubMed]
    [Google Scholar]
  147. Reagan RL, Rumbaugh H, Nelson H, Brueckner AL. Effect of zika virus and bwamba virus in the cave bat (Myotus lucifugus). Trans Am Microsc Soc 1955; 74:77 [View Article]
    [Google Scholar]
  148. Boorman JP, Porterfield JS. A simple technique for infection of mosquitoes with viruses; transmission of Zika virus. Trans R Soc Trop Med Hyg 1956; 50:238–242 [View Article][PubMed]
    [Google Scholar]
  149. Bearcroft WG. Zika virus infection experimentally induced in a human volunteer. Trans R Soc Trop Med Hyg 1956; 50:438–441 [View Article]
    [Google Scholar]
  150. Uraki R, Hastings AK, Gloria-Soria A, Powell JR, Fikrig E. Altered vector competence in an experimental mosquito-mouse transmission model of Zika infection. PLoS Negl Trop Dis 2018; 12:e0006350 [View Article][PubMed]
    [Google Scholar]
  151. Secundino NFC, Chaves BA, Orfano AS, Silveira KRD, Rodrigues NB et al. Zika virus transmission to mouse ear by mosquito bite: a laboratory model that replicates the natural transmission process. Parasit Vectors 2017; 10:346 [View Article][PubMed]
    [Google Scholar]
  152. Ayres CF. Identification of Zika virus vectors and implications for control. Lancet Infect Dis 2016; 16:278–279 [View Article][PubMed]
    [Google Scholar]
  153. Amraoui F, Atyame-Nten C, Vega-Rúa A, Lourenço-de-Oliveira R, Vazeille M et al. Culex mosquitoes are experimentally unable to transmit Zika virus. Euro Surveill 2016; 21: [View Article][PubMed]
    [Google Scholar]
  154. Richard V, Paoaafaite T, Cao-Lormeau VM. Acquittal of Culex quinquefasciatus in transmitting Zika virus during the French polynesian outbreak. Acta Trop 2017; 173:200–201 [View Article][PubMed]
    [Google Scholar]
  155. Dodson BL, Pujhari S, Rasgon JL. Vector competence of selected North American Anopheles and Culex mosquitoes for Zika virus. PeerJ 2018; 6:e4324 [View Article][PubMed]
    [Google Scholar]
  156. Guo XX, Li CX, Deng YQ, Xing D, Liu QM et al. Culex pipiens quinquefasciatus: a potential vector to transmit Zika virus. Emerg Microbes Infect 2016; 5:e102 [View Article][PubMed]
    [Google Scholar]
  157. Guedes DR, Paiva MH, Donato MM, Barbosa PP, Krokovsky L et al. Zika virus replication in the mosquito Culex quinquefasciatus in Brazil. Emerg Microbes Infect 2017; 6:e69 [View Article][PubMed]
    [Google Scholar]
  158. Elizondo-Quiroga D, Medina-Sánchez A, Sánchez-González JM, Eckert KA, Villalobos-Sánchez E et al. Zika virus in salivary glands of five different species of wild-caught mosquitoes from Mexico. Sci Rep 2018; 8:809 [View Article][PubMed]
    [Google Scholar]
  159. Halstead SB. Dengue antibody-dependent enhancement: knowns and unknowns. Microbiol Spectr 2014; 2:249–271 [View Article][PubMed]
    [Google Scholar]
  160. Fagbami AH, Halstead SB, Marchette NJ, Larsen K. Cross-infection enhancement among African flaviviruses by immune mouse ascitic fluids. Cytobios 1987; 49:49–55[PubMed]
    [Google Scholar]
  161. Charles AS, Christofferson RC. Utility of a dengue-derived monoclonal antibody to enhance zika infection in vitro. PLoS Curr 2016; 8: [View Article][PubMed]
    [Google Scholar]
  162. Paul LM, Carlin ER, Jenkins MM, Tan AL, Barcellona CM et al. Dengue virus antibodies enhance Zika virus infection. Clin Transl Immunology 2016; 5:e117 [View Article][PubMed]
    [Google Scholar]
  163. Pantoja P, Pérez-Guzmán EX, Rodríguez IV, White LJ, González O et al. Zika virus pathogenesis in rhesus macaques is unaffected by pre-existing immunity to dengue virus. Nat Commun 2017; 8:15674 [View Article][PubMed]
    [Google Scholar]
  164. Terzian ACB, Schanoski AS, Mota MTO, da Silva RA, Estofolete CF et al. Viral load and cytokine response profile does not support antibody-dependent enhancement in dengue-primed zika virus-infected patients. Clin Infect Dis 2017; 65:1260–1265 [View Article][PubMed]
    [Google Scholar]
  165. Kam YW, Lee CY, Teo TH, Howland SW, Amrun SN et al. Cross-reactive dengue human monoclonal antibody prevents severe pathologies and death from Zika virus infections. JCI Insight 2017; 2:92428 [View Article][PubMed]
    [Google Scholar]
  166. Urakami A, Ngwe Tun MM, Moi ML, Sakurai A, Ishikawa M et al. An envelope-modified tetravalent dengue virus-like-particle vaccine has implications for flavivirus vaccine design. J Virol 2017; 91:e01181-17 [View Article][PubMed]
    [Google Scholar]
  167. Bardina SV, Bunduc P, Tripathi S, Duehr J, Frere JJ et al. Enhancement of zika virus pathogenesis by preexisting antiflavivirus immunity. Science 2017; 356:175–180
    [Google Scholar]
  168. Londono-Renteria B, Troupin A, Cardenas JC, Hall A, Perez OG et al. A relevant in vitro human model for the study of Zika virus antibody-dependent enhancement. J Gen Virol 2017; 98:1702–1712 [View Article][PubMed]
    [Google Scholar]
  169. Winkler GC, Cheville NF. Ultrastructural morphometric investigation of early lesions in the pulmonary alveolar region of pigs during experimental swine influenza infection. Am J Pathol 1986; 122:541–552[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/jgv.0.001153
Loading
/content/journal/jgv/10.1099/jgv.0.001153
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error