Characterization of ssDNA aptamers specifically directed against Trachinotus ovatus NNV (GTONNV)-infected cells with antiviral activities Yu, Qing and Liu, Mingzhu and Wei, Shina and Wu, Siting and Xiao, Hehe and Qin, Xianling and Su, Hongfei and Li, Pengfei,, 100, 380-391 (2019), doi = https://doi.org/10.1099/jgv.0.001226, publicationName = Microbiology Society, issn = 0022-1317, abstract= Nervous necrosis virus (NNV), is one of the most fatal viruses in marine fish aquaculture, and is capable of infecting over 50 different fish species. Trachinotus ovatus NNV (GTONNV) was isolated from diseased golden pompano. This T. ovatus strain was isolated from Guangxi, China. Single-stranded DNA (ssDNA) aptamers with high specificity for GTONNV-infected T. ovatus cerebellum cells (TOCC) were produced by Systematic Evolution of Ligands by Exponential Enrichment (SELEX). The characterization of these aptamers was performed using flow cytometry and laser scanning confocal microscopy. The selected aptamers showed significant specificity for GTONNV-infected cells. Based on MFOLD prediction, aptamers formed distinct stem-loop structures that could form the basis for the aptamers' specific binding to their cellular targets. Protease treatment results revealed that the target molecules for aptamers TNA1, TNA4 and TNA19 within GTONNV-infected cells may be membrane proteins that were trypsin-sensitive. Specific endocytosis of aptamer TNA1, TNA4 and TNA19 into GTONNV-infected cells was also shown. The selected aptamers demonstrated antiviral effects against GTONNV both in vitro and in vivo. This is the first time that aptamers targeting GTONNV-infected T. ovatus cells have been selected and characterized. These aptamers hold promise as rapid diagnostic reagents or targeted therapeutic drugs against GTONNV., language=, type=