RT Journal Article SR Electronic(1) A1 Moore, Clayton A1 Meng, BaozhongYR 2019 T1 Prediction of the molecular boundary and functionality of novel viral AlkB domains using homology modelling and principal component analysis JF Journal of General Virology, VO 100 IS 4 SP 691 OP 703 DO https://doi.org/10.1099/jgv.0.001237 PB Microbiology Society, SN 1465-2099, AB Alkylation B (AlkB) proteins are ubiquitous among diverse cellular organisms, where they act to reverse the damage in DNA and RNA due to methylation, such as 1-methyladenine and 3-methylcytosine. This process is found in virtually all forms of life, with the notable exception of archaea and yeast. This protein family is so significant to all forms of life that it was recently discovered that an AlkB domain is encoded as part of the replicase (poly)protein in a small subset of single-stranded, positive-sense RNA viruses, mainly belonging to the families Alphaflexiviridae, Betaflexiviridae and Closteroviridae. Interestingly, these AlkB-containing viruses are mostly important pathogens of woody perennials such as fruit crops, and are responsible for significant economic losses. As a newly identified protein domain in RNA viruses, the origin and molecular boundary of the viral AlkB domain, as well as its function in viral replication, virus–host interactions and infection are unknown. This is due to the limited sequence conservation of viral AlkB domains, especially at the N-terminal region corresponding to the nucleotide recognition lid. Here we apply several independent analytical approaches (homology modelling, principal component analysis and the Shannon diversity index) for the first time, to better understand this viral domain. We conclude that a functional AlkB domain in these viruses comprises approximately 150–170 amino acids. Although the exact function of the viral AlkB domain remains unknown, we hypothesize that it counteracts a host defence mechanism that is unique in these perennial plants and was acquired to enhance the long-term survival of these RNA viruses that infect perennial plants. Interestingly, a majority of these viruses have a tissue tropism for the phloem. Furthermore, we identified several additional amino acid residues that are uniquely conserved among viral AlkBs. This work helps to provide a foundation for further investigation of the function of viral AlkBs and critical residues involved in AlkB function., UL https://www.microbiologyresearch.org/content/journal/jgv/10.1099/jgv.0.001237