1887

Abstract

Human adenovirus type 5 infection causes the disruption of structures in the cell nucleus termed promyelocytic leukaemia (PML) protein nuclear domains or ND10, which contain the PML protein as a critical component. This disruption is achieved through the action of the viral E4 Orf3 protein, which forms track-like nuclear structures that associate with the PML protein. This association is mediated by a direct interaction of Orf3 with a specific PML isoform, PMLII. We show here that the Orf3 interaction properties of PMLII are conferred by a 40 aa residue segment of the unique C-terminal domain of the protein. This segment was sufficient to confer interaction on a heterologous protein. The analysis was informed by prior application of a bioinformatic tool for the prediction of potential protein interaction sites within unstructured protein sequences (predictors of naturally disordered region analysis; PONDR). This tool predicted three potential molecular recognition elements (MoRE) within the C-terminal domain of PMLII, one of which was found to form the core of the Orf3 interaction site, thus demonstrating the utility of this approach. The sequence of the mapped Orf3-binding site on PML protein was found to be relatively poorly conserved across other species; however, the overall organization of MoREs within unstructured sequence was retained, suggesting the potential for conservation of functional interactions.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.005512-0
2009-01-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/1/95.html?itemId=/content/journal/jgv/10.1099/vir.0.005512-0&mimeType=html&fmt=ahah

References

  1. Araujo, F. D., Stracker, T. H., Carson, C. T., Lee, D. V. & Weitzman, M. D.(2005). Adenovirus type 5 E4orf3 protein targets the Mre11 complex to cytoplasmic aggresomes. J Virol 79, 11382–11391.[CrossRef] [Google Scholar]
  2. Beech, S. J., Lethbridge, K. J., Killick, N., McGlincy, N. & Leppard, K. N.(2005). Isoforms of the promyelocytic leukemia protein differ in their effects on ND10 organization. Exp Cell Res 307, 109–117.[CrossRef] [Google Scholar]
  3. Bernardi, R. & Pandolfi, P. P.(2007). Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol 8, 1006–1016.[CrossRef] [Google Scholar]
  4. Bernardi, R., Scaglioni, P. P., Bergmann, S., Horn, H. F., Vousden, K. H. & Pandolfi, P. P.(2004). PML regulates p53 stability by sequestering Mdm2 to the nucleolus. Nat Cell Biol 6, 665–672.[CrossRef] [Google Scholar]
  5. Borden, K. L. B., Lally, J. M., Martin, S. R., O'Reilly, N. J., Solomon, E. & Freemont, P. S.(1996). In vivo and in vitro characterization of the B1 and B2 zinc- binding domains from the acute promyelocytic leukemia protooncoprotein PML. Proc Natl Acad Sci U S A 93, 1601–1606.[CrossRef] [Google Scholar]
  6. Bourhis, J. M., Johansson, K., Receveur-Brechot, V., Oldfield, C. J., Dunker, A. K., Canard, B. & Longhi, S.(2004). The C-terminal domain of measles virus nucleoprotein belongs to the class of intrinsically disordered proteins that fold upon binding to their physiological partner. Virus Res 99, 157–167.[CrossRef] [Google Scholar]
  7. Callaghan, A. J., Aurikko, J. P., Ilag, L. L., Grossman, J. G., Chandran, V., Kuhnel, K., Poljak, L., Carpousis, A. J., Robinson, C. V. & other authors(2004). Studies of the RNA degradosome-organizing domain of the Escherichia coli ribonuclease RNase E. J Mol Biol 340, 965–979.[CrossRef] [Google Scholar]
  8. Carvalho, T., Seeler, J. S., Ohman, K., Jordan, P., Pettersson, U., Akusjarvi, G., Carmofonseca, M. & Dejean, A.(1995). Targeting of adenovirus E1A and E4–ORF3 proteins to nuclear matrix-associated PML bodies. J Cell Biol 131, 45–56.[CrossRef] [Google Scholar]
  9. Condemine, W., Takahashi, Y., Zhu, J., Puvion-Dutilleul, F., Guegan, S., Janin, A. & de The, H.(2006). Characterization of endogenous human promyelocytic leukemia isoforms. Cancer Res 66, 6192–6198.[CrossRef] [Google Scholar]
  10. Condemine, W., Takahashi, Y., Le Bras, M. & de The, H.(2007). A nucleolar targeting signal in PML-I addresses PML to nucleolar caps in stressed or senescent cells. J Cell Sci 120, 3219–3227.[CrossRef] [Google Scholar]
  11. Doucas, V., Ishov, A. M., Romo, A., Juguilon, H., Weitzman, M. D., Evans, R. M. & Maul, G. G.(1996). Adenovirus replication is coupled with the dynamic properties of the PML nuclear structure. Genes Dev 10, 196–207.[CrossRef] [Google Scholar]
  12. Evans, J. D. & Hearing, P.(2003). Distinct roles of the adenovirus E4 ORF3 protein in viral DNA replication and inhibition of genome concatenation. J Virol 77, 5295–5304.[CrossRef] [Google Scholar]
  13. Everett, R. D. & Chelbi-Alix, M. K.(2007). PML and PML nuclear bodies: implications in antiviral defence. Biochimie 89, 819–830.[CrossRef] [Google Scholar]
  14. Everett, R. D. & Maul, G. G.(1994). HSV-1 IE protein Vmw110 causes redistribution of PML. EMBO J 13, 5062–5069. [Google Scholar]
  15. Everett, R. D. & Murray, J.(2005). ND10 components relocate to sites associated with herpes simplex virus type 1 nucleoprotein complexes during virus infection. J Virol 79, 5078–5089.[CrossRef] [Google Scholar]
  16. Everett, R. D., Rechter, S., Papior, P., Tavalai, N., Stamminger, T. & Orr, A.(2006). PML contributes to a cellular mechanism of repression of herpes simplex virus type 1 infection that is inactivated by ICP0. J Virol 80, 7995–8005.[CrossRef] [Google Scholar]
  17. Everett, R. D., Parada, C., Gripon, P., Sirma, H. & Orr, A.(2008). Replication of ICP0-null mutant herpes simplex virus type 1 is restricted by both PML and Sp100. J Virol 82, 2661–2672.[CrossRef] [Google Scholar]
  18. Fagioli, M., Alcalay, M., Pandolfi, P. P., Venturini, L., Mencarelli, A., Simeone, A., Acampora, D., Grignani, F. & Pelicci, P. G.(1992). Alternative splicing of PML transcripts predicts expression of several carboxyterminally different protein isoforms. Oncogene 7, 1083–1091. [Google Scholar]
  19. Fagioli, M., Alcalay, M., Tomassoni, L., Ferrucci, P. F., Mencarelli, A., Riganelli, D., Grignani, F., Pozzan, T., Nicoletti, I. & other authors(1998). Cooperation between the RING+B1–B2 and coiled-coil domains of PML is necessary for its effects on cell survival. Oncogene 16, 2905–2913.[CrossRef] [Google Scholar]
  20. Hoppe, A., Beech, S. J., Dimmock, J. & Leppard, K. N.(2006). Interaction of the adenovirus type 5 E4 Orf3 protein with promyelocytic leukemia protein isoform II is required for ND10 disruption. J Virol 80, 3042–3049.[CrossRef] [Google Scholar]
  21. Ishov, A. M. & Maul, G. G.(1996). The periphery of nuclear domain 10 (ND10) as site of DNA virus deposition. J Cell Biol 134, 815–826.[CrossRef] [Google Scholar]
  22. Janderová-Rossmeislová, L., Nováková, Z., Vlasáková, J., Phillmonenko, V., Hozák, P. & Hodný, Z.(2007). PML protein association with specific nucleolar structures differs in normal, tumor and senescent human cells. J Struct Biol 159, 56–70.[CrossRef] [Google Scholar]
  23. Jensen, K., Shiels, C. & Freemont, P. S.(2001). PML protein isoforms and the RBCC/TRIM motif. Oncogene 20, 7223–7233.[CrossRef] [Google Scholar]
  24. Kalderon, D., Roberts, B. L., Richardson, W. D. & Smith, A. E.(1984). A short amino-acid sequence able to specify nuclear location. Cell 39, 499–509.[CrossRef] [Google Scholar]
  25. Kelly, C., van Driel, R. & Wilkinson, G. W. G.(1995). Disruption of PML-associated nuclear bodies during human cytomegalovirus infection. J Gen Virol 76, 2887–2893.[CrossRef] [Google Scholar]
  26. Leppard, K. N. & Dimmock, J.(2006). Virus interactions with PML nuclear bodies. In Viruses and the Nucleus, pp. 213–245. Edited by J. Hiscox. Wiley.
  27. Liu, Y., Shevchenko, A. & Berk, A. J.(2005). Adenovirus exploits the cellular aggresome response to accelerate inactivation of the MRN complex. J Virol 79, 14004–14016.[CrossRef] [Google Scholar]
  28. Longhi, S., Receveur-Brechot, V., Karlin, D., Johansson, K., Darbon, H., Bhella, D., Yeo, R., Finet, S. & Canard, B.(2003). The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J Biol Chem 278, 18638–18648.[CrossRef] [Google Scholar]
  29. Mattsson, K., Pokrovskaja, K., Kiss, C., Klein, G. & Szekely, L.(2001). Proteins associated with the promyelocytic leukemia gene product (PML)-containing nuclear body move to the nucleolus upon inhibition of proteasome-dependent protein degradation. Proc Natl Acad Sci U S A 98, 1012–1017.[CrossRef] [Google Scholar]
  30. Mohan, A. C., Oldfield, C. J., Radivojac, P., Vacic, V., Cortese, M. S., Dunker, A. K. & Uversky, V. N.(2006). Analysis of molecular recognition features (MoRFs). J Mol Biol 362, 1043–1059.[CrossRef] [Google Scholar]
  31. Nevels, M., Tauber, B., Kremmer, E., Spruss, T., Wolf, H. & Dobner, T.(1999). Transforming potential of the adenovirus type 5 E4orf3 protein. J Virol 73, 1591–1600. [Google Scholar]
  32. Obradovic, Z., Peng, K., Vucetic, S., Radivojac, P. & Dunker, A. K.(2005). Exploiting heterogeneous sequence properties improves prediction of protein disorder. Proteins 61 (Suppl. 7), 176–182. [Google Scholar]
  33. Oldfield, C. J., Cheng, Y., Cortese, M. S., Romero, P., Uversky, V. N. & Dunker, A. K.(2005). Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44, 12454–12470.[CrossRef] [Google Scholar]
  34. Oldfield, C. J., Meng, J., Yang, J. Y., Yang, M. Q., Uversky, V. N. & Dunker, A. K.(2008). Flexible nets: disorder and induced fit in the associations of p53 and 14-3-3 with their partners. BMC Genomics 9 (Suppl. 1), S1 [Google Scholar]
  35. Peng, H. Z., Feldman, I. & Rauscher, F. J., 3rd(2002). Hetero-oligomerization among the TIF family of RBCC/TRIM domain-containing nuclear cofactors: a potential mechanism for regulating the switch between coactivation and corepression. J Mol Biol 320, 629–644.[CrossRef] [Google Scholar]
  36. Romero, P., Obradovic, Z., Kissinger, C. R., Villafranca, J. E. & Dunker, A. K.(1997). Identifying disordered regions in proteins from amino acid sequences. In IEEE International Conference on Neural Networks, pp. 90–95.
  37. Romero, P., Obradovic, D., Li, X., Garner, E. C., Brown, C. J. & Dunker, A. K.(2001). Sequence complexity of disordered protein. Proteins 42, 38–48.[CrossRef] [Google Scholar]
  38. Salomoni, P. & Bellodi, C.(2007). New insights into the cytoplasmic function of PML. Histol Histopathol 22, 937–946. [Google Scholar]
  39. Scaglioni, P. P., Yung, T. M., Cai, L. F., Erdjument-Bromage, H., Kaufman, A. J., Singh, B., Teruya-Feldstein, J., Tempst, P. & Pandolfi, P. P.(2006). A CK2-dependent mechanism for degradation of the PML tumor suppressor. Cell 126, 269–283.[CrossRef] [Google Scholar]
  40. Shen, T. H., Lin, H.-K., Scaglioni, P. P., Yung, T. M. & Pandolfi, P. P.(2006). The mechanisms of PML-nuclear body formation. Mol Cell 24, 331–339.[CrossRef] [Google Scholar]
  41. Sternsdorf, T., Jensen, K. & Will, H.(1997). Evidence for covalent modification of the nuclear dot-associated proteins PML and Sp100 by PIC1/SUMO-1. J Cell Biol 139, 1621–1634.[CrossRef] [Google Scholar]
  42. Stracker, T. H., Carson, C. T. & Weitzman, M. D.(2002). Adenovirus oncoproteins inactivate the Mre11–Rad50–NBS1 DNA repair complex. Nature 418, 348–352.[CrossRef] [Google Scholar]
  43. Stracker, T. H., Lee, D. V., Carson, C. T., Araujo, F. D., Ornelles, D. A. & Weitzman, M. D.(2005). Serotype-specific reorganization of the Mre11 complex by adenoviral E4orf3 proteins. J Virol 79, 6664–6673.[CrossRef] [Google Scholar]
  44. Ullman, A. J. & Hearing, P.(2008). The cellular proteins PML and Daxx mediate an innate antiviral defence antagonized by the adenovirus E4 ORF3 protein. J Virol 82, 7325–7335.[CrossRef] [Google Scholar]
  45. Ullman, A. J., Reich, N. C. & Hearing, P.(2007). Adenovirus E4 ORF3 protein inhibits the interferon-mediated antiviral response. J Virol 81, 4744–4752.[CrossRef] [Google Scholar]
  46. Yondola, M. A. & Hearing, P.(2007). The adenovirus E4 ORF3 protein binds and reorganizes the TRIM family member transcriptional intermediary factor 1 alpha. J Virol 81, 4264–4271.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.005512-0
Loading
/content/journal/jgv/10.1099/vir.0.005512-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error