1887

Abstract

Human cytomegalovirus (HCMV) has tropism for glial cells, among many other cell types. It was reported previously that the stable expression of HCMV immediate-early protein 1 (IE1) could dramatically reduce the RNA level of glial fibrillary acidic protein (GFAP), an astroglial cell-specific intermediate filament protein, which is progressively lost with an increase in glioma malignancy. To understand this phenomenon in the context of virus infection, a human glioblastoma cell line, U373MG, was infected with HCMV (strain AD169 or Towne). The RNA level of GFAP was reduced by more than 10-fold at an m.o.i. of 3 at 48 h post-infection, whilst virus treated with neutralizing antibody C23 or with UV light had a much-reduced effect. Treatment of infected cells with ganciclovir did not prevent HCMV-mediated downregulation of GFAP. Although the expression of GFAP RNA is downregulated in IE1-expressing cells, a mutant HCMV strain lacking IE1 still suppressed GFAP, indicating that other IE proteins may be involved. IE2 is also proposed to be involved in GFAP downregulation, as an adenoviral vector expressing IE2 could also reduce the RNA level of GFAP. Data from the mutational analysis indicated that HCMV infection might affect the expression of this structural protein significantly, primarily through the C-terminal acidic region of the IE1 protein.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.006486-0
2009-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/4/954.html?itemId=/content/journal/jgv/10.1099/vir.0.006486-0&mimeType=html&fmt=ahah

References

  1. Bonin L. R., McDougall J. K. 1997; Human cytomegalovirus IE2 86-kilodalton protein binds p53 but does not abrogate G1 checkpoint function. J Virol 71:5861–5870
    [Google Scholar]
  2. Bryant L. A., Mixon P., Davidson M., Bannister A. J., Kouzarides T., Sinclair J. H. 2000; The human cytomegalovirus 86-kilodalton major immediate-early protein interacts physically and functionally with histone acetyltransferase P/CAF. J Virol 74:7230–7237 [CrossRef]
    [Google Scholar]
  3. Castillo J. P., Yurochko A. D., Kowalik T. F. 2000; Role of human cytomegalovirus immediate-early proteins in cell growth control. J Virol 74:8028–8037 [CrossRef]
    [Google Scholar]
  4. Chiu F. C., Goldman J. E. 1984; Synthesis and turnover of cytoskeletal proteins in cultured astrocytes. J Neurochem 42:166–174 [CrossRef]
    [Google Scholar]
  5. Chumbalkar V. C., Subhashini C., Dhople V. M., Sundaram C. S., Jagannadham M. V., Kumar K. N., Srinivas P. N., Mythili R., Rao M. K. other authors 2005; Differential protein expression in human gliomas and molecular insights. Proteomics 5:1167–1177 [CrossRef]
    [Google Scholar]
  6. Cinque P., Marenzi R., Ceresa D. 1997; Cytomegalovirus infections of the nervous system. Intervirology 40:85–97 [CrossRef]
    [Google Scholar]
  7. Cobbs C. S., Harkins L., Samanta M., Gillespie G. Y., Bharara S., King P. H., Nabors L. B., Cobbs C. G., Britt W. J. 2002; Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 62:3347–3350
    [Google Scholar]
  8. de Armond S. J., Eng L. F., Rubinstein L. J. 1980; The application of glial fibrillary acidic (GFA) protein immunohistochemistry in neurooncology. A progress report. Pathol Res Pract 168:374–394 [CrossRef]
    [Google Scholar]
  9. Deck J. H., Eng L. F., Bigbee J., Woodcock S. M. 1978; The role of glial fibrillary acidic protein in the diagnosis of central nervous system tumors. Acta Neuropathol 42:183–190 [CrossRef]
    [Google Scholar]
  10. Duffy P. E. 1982; Glial fibrillary acidic protein and induced differentiation of glia in vitro . J Neurol Sci 53:443–460 [CrossRef]
    [Google Scholar]
  11. Elobeid A., Bongcam-Rudloff E., Westermark B., Nister M. 2000; Effects of inducible glial fibrillary acidic protein on glioma cell motility and proliferation. J Neurosci Res 60:245–256 [CrossRef]
    [Google Scholar]
  12. Eng L. F., Rubinstein L. J. 1978; Contribution of immunohistochemistry to diagnostic problems of human cerebral tumors. J Histochem Cytochem 26:513–522 [CrossRef]
    [Google Scholar]
  13. Fortunato E. A., Sommer M. H., Yoder K., Spector D. H. 1997; Identification of domains within the human cytomegalovirus major immediate-early 86-kilodalton protein and the retinoblastoma protein required for physical and functional interaction with each other. J Virol 71:8176–8185
    [Google Scholar]
  14. Greaves R. F., Mocarski E. S. 1998; Defective growth correlates with reduced accumulation of a viral DNA replication protein after low-multiplicity infection by a human cytomegalovirus IE1 mutant. J Virol 72:366–379
    [Google Scholar]
  15. Hayhurst G. P., Bryant L. A., Caswell R. C., Walker S. M., Sinclair J. H. 1995; CCAAT box-dependent activation of the TATA-less human DNA polymerase alpha promoter by the human cytomegalovirus 72-kilodalton major immediate-early protein. J Virol 69:182–188
    [Google Scholar]
  16. He Z., Brinton B. T., Greenblatt J., Hassell J. A., Ingles C. J. 1993; The transactivator proteins VP16 and GAL4 bind replication factor A. Cell 73:1223–1232 [CrossRef]
    [Google Scholar]
  17. Hlobilkova A., Ehrmann J., Sedlakova E., Krejci V., Knizetova P., Fiuraskova M., Kala M., Kalita O., Kolar Z. 2007; Could changes in the regulation of the PI3K/PKB/Akt signaling pathway and cell cycle be involved in astrocytic tumor pathogenesis and progression?. Neoplasma 54:334–341
    [Google Scholar]
  18. Johnson R. A., Yurochko A. D., Poma E. E., Zhu L., Huang E. S. 1999; Domain mapping of the human cytomegalovirus IE1-72 and cellular p107 protein–protein interaction and the possible functional consequences. J Gen Virol 80:1293–1303
    [Google Scholar]
  19. Keil G. M., Ebeling-Keil A., Koszinowski U. H. 1987; Immediate-early genes of murine cytomegalovirus: location, transcripts, and translation products. J Virol 61:526–533
    [Google Scholar]
  20. Kim J., Kwon Y. J., Park E. S., Sung B., Kim J. H., Park C. G., Hwang E. S., Cha C. Y. 2003; Human cytomegalovirus (HCMV) IE1 plays role in resistance to apoptosis with etoposide in cancer cell line by Cdk2 accumulation. Microbiol Immunol 47:959–967 [CrossRef]
    [Google Scholar]
  21. Klein M., Schoppel K., Amvrossiadis N., Mach M. 1999; Strain-specific neutralization of human cytomegalovirus isolates by human sera. J Virol 73:878–886
    [Google Scholar]
  22. Lafemina R. L., Pizzorno M. C., Mosca J. D., Hayward G. S. 1989; Expression of the acidic nuclear immediate-early protein (IE1) of human cytomegalovirus in stable cell lines and its preferential association with metaphase chromosomes. Virology 172:584–600 [CrossRef]
    [Google Scholar]
  23. Lee H. R., Kim D. J., Lee J. M., Choi C. Y., Ahn B. Y., Hayward G. S., Ahn J. H. 2004; Ability of the human cytomegalovirus IE1 protein to modulate sumoylation of PML correlates with its functional activities in transcriptional regulation and infectivity in cultured fibroblast cells. J Virol 78:6527–6542 [CrossRef]
    [Google Scholar]
  24. Lee K., Jeon K., Kim J. M., Kim V. N., Choi D. H., Kim S. U., Kim S. 2005; Downregulation of GFAP, TSP-1, and p53 in human glioblastoma cell line, U373MG, by IE1 protein from human cytomegalovirus. Glia 51:1–12 [CrossRef]
    [Google Scholar]
  25. Lee H. R., Huh Y. H., Kim Y. E., Lee K., Kim S., Ahn J. H. 2007; N-terminal determinants of human cytomegalovirus IE1 protein in nuclear targeting and disrupting PML-associated subnuclear structures. Biochem Biophys Res Commun 356:499–504 [CrossRef]
    [Google Scholar]
  26. Li R., Botchan M. R. 1993; The acidic transcriptional activation domains of VP16 and p53 bind the cellular replication protein A and stimulate in vitro BPV-1 DNA replication. Cell 73:1207–1221 [CrossRef]
    [Google Scholar]
  27. Lukac D. M., Alwine J. C. 1999; Effects of human cytomegalovirus major immediate-early proteins in controlling the cell cycle and inhibiting apoptosis: studies with ts 13 cells. J Virol 73:2825–2831
    [Google Scholar]
  28. Lukac D. M., Harel N. Y., Tanese N., Alwine J. C. 1997; TAF-like functions of human cytomegalovirus immediate-early proteins. J Virol 71:7227–7239
    [Google Scholar]
  29. Maisch T., Kropff B., Sinzger C., Mach M. 2002; Upregulation of CD40 expression on endothelial cells infected with human cytomegalovirus. J Virol 76:12803–12812 [CrossRef]
    [Google Scholar]
  30. Marchini A., Liu H., Zhu H. 2001; Human cytomegalovirus with IE-2 (UL122) deleted fails to express early lytic genes. J Virol 75:1870–1878 [CrossRef]
    [Google Scholar]
  31. Margolis M. J., Pajovic S., Wong E. L., Wade M., Jupp R., Nelson J. A., Azizkhan J. C. 1995; Interaction of the 72-kilodalton human cytomegalovirus IE1 gene product with E2F1 coincides with E2F-dependent activation of dihydrofolate reductase transcription. J Virol 69:7759–7767
    [Google Scholar]
  32. Martell M., Gómez J., Esteban J. I., Sauleda S., Quer J., Cabot B., Esteban R., Guardia J. 1999; High-throughput real-time reverse transcription-PCR quantitation of hepatitis C virus RNA. J Clin Microbiol 37:327–332
    [Google Scholar]
  33. Mitchell D. A., Xie W., Schmittling R., Learn C., Friedman A., McLendon R. E., Sampson J. H. 2008; Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro-oncol 10:10–18 [CrossRef]
    [Google Scholar]
  34. Mocarski E. S., Courcelle C. T. 2001; Cytomegaloviruses and their replication. In Fields Virology , 4th edn. pp 2629–2673Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  35. Morrison R. S., De Vellis J., Lee Y. L., Bradshaw R. A., Eng L. F. 1985; Hormones and growth factors induce the synthesis of glial fibrillary acidic protein in rat brain astrocytes. J Neurosci Res 14:167–176 [CrossRef]
    [Google Scholar]
  36. Murphy K. G., Hatton J. D., U H. S. 1998; Role of glial fibrillary acidic protein expression in the biology of human glioblastoma U-373MG cells. J Neurosurg 89:997–1006 [CrossRef]
    [Google Scholar]
  37. Murphy E. A., Streblow D. N., Nelson J. A., Stinski M. F. 2000; The human cytomegalovirus IE86 protein can block cell cycle progression after inducing transition into the S phase of permissive cells. J Virol 74:7108–7118 [CrossRef]
    [Google Scholar]
  38. Nevels M., Brune W., Shenk T. 2004a; SUMOylation of the human cytomegalovirus 72-kilodalton IE1 protein facilitates expression of the 86-kilodalton IE2 protein and promotes viral replication. J Virol 78:7803–7812 [CrossRef]
    [Google Scholar]
  39. Nevels M., Paulus C., Shenk T. 2004b; Human cytomegalovirus immediate-early 1 protein facilitates viral replication by antagonizing histone deacetylation. Proc Natl Acad Sci U S A 101:17234–17239 [CrossRef]
    [Google Scholar]
  40. Noble S., Faulds D. 1998; Ganciclovir. An update of its use in the prevention of cytomegalovirus infection and disease in transplant recipients. Drugs 56:115–146 [CrossRef]
    [Google Scholar]
  41. Ohizumi Y., Suzuki H., Matsumoto Y., Masuho Y., Numazaki Y. 1992; Neutralizing mechanisms of two human monoclonal antibodies against human cytomegalovirus glycoprotein 130/55. J Gen Virol 73:2705–2707 [CrossRef]
    [Google Scholar]
  42. Pajovic S., Wong E. L., Black A. R., Azizkhan J. C. 1997; Identification of a viral kinase that phosphorylates specific E2Fs and pocket proteins. Mol Cell Biol 17:6459–6464
    [Google Scholar]
  43. Pathakamuri J. A., Theilmann D. A. 2002; The acidic activation domain of the baculovirus transactivator IE1 contains a virus-specific domain essential for DNA replication. J Virol 76:5598–5604 [CrossRef]
    [Google Scholar]
  44. Pizzorno M. C., Mullen M. A., Chang Y. N., Hayward G. S. 1991; The functionally active IE2 immediate-early regulatory protein of human cytomegalovirus is an 80-kilodalton polypeptide that contains two distinct activator domains and a duplicated nuclear localization signal. J Virol 65:3839–3852
    [Google Scholar]
  45. Plachter B., Sinzger C., Jahn G. 1996; Cell types involved in replication and distribution of human cytomegalovirus. Adv Virus Res 46:195–261
    [Google Scholar]
  46. Poland S. D., Costello P., Dekaban G. A., Rice G. P. 1990; Cytomegalovirus in the brain: in vitro infection of human brain-derived cells. J Infect Dis 162:1252–1262 [CrossRef]
    [Google Scholar]
  47. Poma E. E., Kowalik T. F., Zhu L., Sinclair J. H., Huang E. S. 1996; The human cytomegalovirus IE1-72 protein interacts with the cellular p107 protein and relieves p107-mediated transcriptional repression of an E2F-responsive promoter. J Virol 70:7867–7877
    [Google Scholar]
  48. Reinhardt J., Smith G. B., Himmelheber C. T., Azizkhan-Clifford J., Mocarski E. S. 2005; The carboxyl-terminal region of human cytomegalovirus IE1491aa contains an acidic domain that plays a regulatory role and a chromatin-tethering domain that is dispensable during viral replication. J Virol 79:225–233 [CrossRef]
    [Google Scholar]
  49. Rutka J. T., Smith S. L. 1993; Transfection of human astrocytoma cells with glial fibrillary acidic protein complementary DNA: analysis of expression, proliferation, and tumorigenicity. Cancer Res 53:3624–3631
    [Google Scholar]
  50. Rutka J. T., Hubbard S. L., Fukuyama K., Matsuzawa K., Dirks P. B., Becker L. E. 1994; Effects of antisense glial fibrillary acidic protein complementary DNA on the growth, invasion, and adhesion of human astrocytoma cells. Cancer Res 54:3267–3272
    [Google Scholar]
  51. Rutka J. T., Murakami M., Dirks P. B., Hubbard S. L., Becker L. E., Fukuyama K., Jung S., Tsugu A., Matsuzawa K. 1997; Role of glial filaments in cells and tumors of glial origin: a review. J Neurosurg 87:420–430 [CrossRef]
    [Google Scholar]
  52. Sabatier J., Uro-Coste E., Pommepuy I., Labrousse F., Allart S., Tremoulet M., Delisle M. B., Brousset P. 2005; Detection of human cytomegalovirus genome and gene products in central nervous system tumours. Br J Cancer 92:747–750 [CrossRef]
    [Google Scholar]
  53. Scheurer M. E., Bondy M. L., Aldape K. D., Albrecht T., El-Zein R. 2008; Detection of human cytomegalovirus in different histological types of gliomas. Acta Neuropathol 116:79–86 [CrossRef]
    [Google Scholar]
  54. Schmidbauer M., Budka H., Ulrich W., Ambros P. 1989; Cytomegalovirus (CMV) disease of the brain in AIDS and connatal infection: a comparative study by histology, immunocytochemistry and in situ DNA hybridization. Acta Neuropathol 79:286–293 [CrossRef]
    [Google Scholar]
  55. Schwartz R., Helmich B., Spector D. H. 1996; CREB and CREB-binding proteins play an important role in the IE2 86-kilodalton protein-mediated transactivation of the human cytomegalovirus 2.2-kilobase RNA promoter. J Virol 70:6955–6966
    [Google Scholar]
  56. Song Y. J., Stinski M. F. 2002; Effect of the human cytomegalovirus IE86 protein on expression of E2F-responsive genes: a DNA microarray analysis. Proc Natl Acad Sci U S A 99:2836–2841 [CrossRef]
    [Google Scholar]
  57. Stenberg R. M., Thomsen D. R., Stinski M. F. 1984; Structural analysis of the major immediate early gene of human cytomegalovirus. J Virol 49:190–199
    [Google Scholar]
  58. Stenberg R. M., Witte P. R., Stinski M. F. 1985; Multiple spliced and unspliced transcripts from human cytomegalovirus immediate-early region 2 and evidence for a common initiation site within immediate-early region 1. J Virol 56:665–675
    [Google Scholar]
  59. Stenberg R. M., Fortney J., Barlow S. W., Magrane B. P., Nelson J. A., Ghazal P. 1990; Promoter-specific trans activation and repression by human cytomegalovirus immediate-early proteins involves common and unique protein domains. J Virol 64:1556–1565
    [Google Scholar]
  60. Steward O., Torre E. R., Tomasulo R., Lothman E. 1991; Neuronal activity up-regulates astroglial gene expression. Proc Natl Acad Sci U S A 88:6819–6823 [CrossRef]
    [Google Scholar]
  61. Streblow D. N., Soderberg-Naucler C., Vieira J., Smith P., Wakabayashi E., Ruchti F., Mattison K., Altschuler Y., Nelson J. A. 1999; The human cytomegalovirus chemokine receptor US28 mediates vascular smooth muscle cell migration. Cell 99:511–520 [CrossRef]
    [Google Scholar]
  62. Tanaka K., Zou J. P., Takeda K., Ferrans V. J., Sandford G. R., Johnson T. M., Finkel T., Epstein S. E. 1999; Effects of human cytomegalovirus immediate-early proteins on p53-mediated apoptosis in coronary artery smooth muscle cells. Circulation 99:1656–1659 [CrossRef]
    [Google Scholar]
  63. Tang Q., Maul G. G. 2006; Immediate-early interactions and epigenetic defense mechanisms. In Cytomegaloviruses: Molecular Biology and Immunology pp 131–149Edited by Reddehase M. J. Norfolk, UK: Caister Academic Press;
    [Google Scholar]
  64. Tetzlaff W., Graeber M. B., Bisby M. A., Kreutzberg G. W. 1988; Increased glial fibrillary acidic protein synthesis in astrocytes during retrograde reaction of the rat facial nucleus. Glia 1:90–95 [CrossRef]
    [Google Scholar]
  65. Toda M., Miura M., Asou H., Sugiyama I., Kawase T., Uyemura K. 1999; Suppression of glial tumor growth by expression of glial fibrillary acidic protein. Neurochem Res 24:339–343 [CrossRef]
    [Google Scholar]
  66. Wilkinson G. W., Kelly C., Sinclair J. H., Rickards C. 1998; Disruption of PML-associated nuclear bodies mediated by the human cytomegalovirus major immediate early gene product. J Gen Virol 79:1233–1245
    [Google Scholar]
  67. Yeung K. C., Stoltzfus C. M., Stinski M. F. 1993; Mutations of the human cytomegalovirus immediate-early 2 protein defines regions and amino acid motifs important in transactivation of transcription from the HIV-1 LTR promoter. Virology 195:786–792 [CrossRef]
    [Google Scholar]
  68. Yu Y., Alwine J. C. 2002; Human cytomegalovirus major immediate-early proteins and simian virus 40 large T antigen can inhibit apoptosis through activation of the phosphatidylinositide 3′-OH kinase pathway and the cellular kinase Akt. J Virol 76:3731–3738 [CrossRef]
    [Google Scholar]
  69. Yu S. S., Kim J. M., Kim S. 2000a; High efficiency retroviral vectors that contain no viral coding sequences. Gene Ther 7:797–804
    [Google Scholar]
  70. Yu S. S., Kim J. M., Kim S. 2000b; The 17 nucleotides downstream from the env gene stop codon are important for murine leukemia virus packaging. J Virol 74:8775–8780 [CrossRef]
    [Google Scholar]
  71. Zhang Z., Huong S. M., Wang X., Huang D. Y., Huang E. S. 2003; Interactions between human cytomegalovirus IE1-72 and cellular p107: functional domains and mechanisms of up-regulation of cyclin E/cdk2 kinase activity. J Virol 77:12660–12670 [CrossRef]
    [Google Scholar]
  72. Zhou R., Skalli O. 2000; TGF- α differentially regulates GFAP, vimentin, and nestin gene expression in U-373 MG glioblastoma cells: correlation with cell shape and motility. Exp Cell Res 254:269–278 [CrossRef]
    [Google Scholar]
  73. Zhu H., Shen Y., Shenk T. 1995; Human cytomegalovirus IE1 and IE2 proteins block apoptosis. J Virol 69:7960–7970
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.006486-0
Loading
/content/journal/jgv/10.1099/vir.0.006486-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error