1887

Abstract

Hepatitis C virus (HCV) protein synthesis is mediated by a highly conserved internal ribosome entry site (IRES), mostly located at the 5′ untranslatable region (UTR) of the viral genome. The translation mechanism is different from that used by cellular cap-mRNAs, making IRESs an attractive target site for new antiviral drugs. The present work characterizes a chimeric RNA molecule (HH363-50) composed of two inhibitors: a hammerhead ribozyme targeting position 363 of the HCV genome and an aptamer directed towards the essential stem–loop structure in domain IV of the IRES region (which contains the translation start codon). The inhibitor RNA interferes with the formation of a translationally active complex, stalling its progression at the level of 80S particle formation. This action is likely related to the effective and specific blocking of HCV IRES-dependent translation achieved in Huh-7 cells. The inhibitor HH363-50 also reduces HCV RNA levels in a subgenomic replicon system. The present findings suggest that HH363-50 could be an effective anti-HCV compound and highlight the possibilities of antiviral agents based on RNA molecules.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.008821-0
2009-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/7/1659.html?itemId=/content/journal/jgv/10.1099/vir.0.008821-0&mimeType=html&fmt=ahah

References

  1. Aldaz-Carroll L., Tallet B., Dausse E., Yurchenko L., Toulmé J. J. 2002; Apical loop-internal loop interactions: a new RNA–RNA recognition motif identified through in vitro selection against RNA hairpins of the hepatitis C virus mRNA. Biochemistry 41:5883–5893 [CrossRef]
    [Google Scholar]
  2. Barroso-delJesus A., Tabler M., Berzal-Herranz A. 1999; Comparative kinetic analysis of structural variants of the hairpin ribozyme reveals further potential to optimize its catalytic performance. Antisense Nucleic Acid Drug Dev 9:433–440 [CrossRef]
    [Google Scholar]
  3. Barroso-delJesus A., Puerta-Fernández E., Tapia N., Romero-López C., Sánchez-Luque F. J., Martínez M.-A., Berzal-Herranz A. 2005; Inhibition of HIV-1 replication by an improved hairpin ribozyme that includes an RNA decoy. RNA Biol 2:75–79 [CrossRef]
    [Google Scholar]
  4. Beales L. P., Holzenburg A., Rowlands D. J. 2003; Viral internal ribosome entry site structures segregate into two distinct morphologies. J Virol 77:6574–6579 [CrossRef]
    [Google Scholar]
  5. Brunel C., Marquet R., Romby P., Ehresmann C. 2002; RNA loop–loop interactions as dynamic functional motifs. Biochimie 84:925–944 [CrossRef]
    [Google Scholar]
  6. Darfeuille F., Reigadas S., Hansen J. B., Orum H., Di Primo C., Toulmé J. J. 2006; Aptamers targeted to an RNA hairpin show improved specificity compared to that of complementary oligonucleotides. Biochemistry 45:12076–12082 [CrossRef]
    [Google Scholar]
  7. De Tomassi A., Pizzuti M., Graziani R., Sbardellati A., Altamura S., Paonessa G., Traboni C. 2002; Cell clones selected from the Huh7 human hepatoma cell line support efficient replication of a subgenomic GB virus B replicon. J Virol 76:7736–7746 [CrossRef]
    [Google Scholar]
  8. Ducongé F., Toulmé J. J. 1999; In vitro selection identifies key determinants for loop-loop interactions: RNA aptamers selective for the TAR RNA element of HIV-1. RNA 5:1605–1614 [CrossRef]
    [Google Scholar]
  9. Friebe P., Bartenschlager R. 2002; Genetic analysis of sequences in the 3′ nontranslated region of hepatitis C virus that are important for RNA replication. J Virol 76:5326–5338 [CrossRef]
    [Google Scholar]
  10. Friebe P., Lohmann V., Krieger N., Bartenschlager R. 2001; Sequences in the 5′ nontranslated region of hepatitis C virus required for RNA replication. J Virol 75:12047–12057 [CrossRef]
    [Google Scholar]
  11. Grace K., Gartland M., Karayiannis P., McGarvey M. J., Clarke B. 1999; The 5′ untranslated region of GB virus B shows functional similarity to the internal ribosome entry site of hepatitis C virus. J Gen Virol 80:2337–2341
    [Google Scholar]
  12. Honda M., Brown E. A., Lemon S. M. 1996; Stability of a stem–loop involving the initiator AUG controls the efficiency of internal initiation of translation on hepatitis C virus RNA. RNA 2:955–968
    [Google Scholar]
  13. Hoofnagle J. H. 1997; Hepatitis C: the clinical spectrum of disease. Hepatology 26:15S–20S [CrossRef]
    [Google Scholar]
  14. Ishida S., Kaito M., Kohara M., Tsukiyama-Kohora K., Fujita N., Ikoma J., Adachi Y., Watanabe S. 2001; Hepatitis C virus core particle detected by immunoelectron microscopy and optical rotation technique. Hepatol Res 20:335–347 [CrossRef]
    [Google Scholar]
  15. Jarczak D., Korf M., Beger C., Manns M. P., Kruger M. 2005; Hairpin ribozymes in combination with siRNAs against highly conserved hepatitis C virus sequence inhibit RNA replication and protein translation from hepatitis C virus subgenomic replicons. FEBS J 272:5910–5922 [CrossRef]
    [Google Scholar]
  16. Ji H., Fraser C. S., Yu Y., Leary J., Doudna J. A. 2004; Coordinated assembly of human translation initiation complexes by the hepatitis C virus internal ribosome entry site RNA. Proc Natl Acad Sci U S A 101:16990–16995 [CrossRef]
    [Google Scholar]
  17. Juliano R., Alam M. R., Dixit V., Kang H. 2008; Mechanisms and strategies for effective delivery of antisense and siRNA oligonucleotides. Nucleic Acids Res 36:4158–4171 [CrossRef]
    [Google Scholar]
  18. Kieft J. S., Zhou K., Jubin R., Murray M. G., Lau J. Y., Doudna J. A. 1999; The hepatitis C virus internal ribosome entry site adopts an ion-dependent tertiary fold. J Mol Biol 292:513–529 [CrossRef]
    [Google Scholar]
  19. Kikuchi K., Umehara T., Fukuda K., Kuno A., Hasegawa T., Nishikawa S. 2005; A hepatitis C virus (HCV) internal ribosome entry site (IRES) domain III–IV-targeted aptamer inhibits translation by binding to an apical loop of domain IIId. Nucleic Acids Res 33:683–692 [CrossRef]
    [Google Scholar]
  20. Larrea E., Aldabe R., Molano E., Fernández-Rodríguez C. M., Ametzazurra A., Civeira M. P., Prieto J. 2006; Altered expression and activation of signal transducers and activators of transcription (STATs) in hepatitis C virus infection: in vivo and in vitro studies. Gut 55:1188–1196
    [Google Scholar]
  21. Lebars I., Richard T., Di Primo C., Toulmé J. J. 2007; NMR structure of a kissing complex formed between the TAR RNA element of HIV-1 and a LNA-modified aptamer. Nucleic Acids Res 35:6103–6114 [CrossRef]
    [Google Scholar]
  22. Lieber A., He C. Y., Polyak S. J., Gretch D. R., Barr D., Kay M. A. 1996; Elimination of hepatitis C virus RNA in infected human hepatocytes by adenovirus-mediated expression of ribozymes. J Virol 70:8782–8791
    [Google Scholar]
  23. Lohmann V., Korner F., Koch J., Herian U., Theilmann L., Bartenschlager R. 1999; Replication of subgenomic hepatitis C virus RNAs in a hepatoma cell line. Science 285:110–113 [CrossRef]
    [Google Scholar]
  24. Lytle J. R., Wu L., Robertson H. D. 2002; Domains on the hepatitis C virus internal ribosome entry site for 40S subunit binding. RNA 8:1045–1055 [CrossRef]
    [Google Scholar]
  25. Macejak D. G., Jensen K. L., Pavco P. A., Phipps K. M., Heinz B. A., Colacino J. M., Blatt L. M. 2001; Enhanced antiviral effect in cell culture of type 1 interferon and ribozymes targeting HCV RNA. J Viral Hepat 8:400–405 [CrossRef]
    [Google Scholar]
  26. Martell M., Esteban J. I., Quer J., Genesca J., Weiner A., Esteban R., Guardia J., Gómez J. 1992; Hepatitis C virus (HCV) circulates as a population of different but closely related genomes: quasispecies nature of HCV genome distribution. J Virol 66:3225–3229
    [Google Scholar]
  27. Martell M., Gómez J., Esteban J. I., Sauleda S., Quer J., Cabot B., Esteban R., Guardia J. 1999; High-throughput real-time reverse transcription-PCR quantitation of hepatitis C virus RNA. J Clin Microbiol 37:327–332
    [Google Scholar]
  28. Muerhoff A. S., Leary T. P., Simons J. N., Pilot-Matias T. J., Dawson G. J., Erker J. C., Chalmers M. L., Schlauder G. G., Desai S. M., Mushahwar I. K. 1995; Genomic organization of GB viruses A and B: two new members of the Flaviviridae associated with GB agent hepatitis. J Virol 69:5621–5630
    [Google Scholar]
  29. Pérez-Ruiz M., Barroso-DelJesus A., Berzal-Herranz A. 1999; Specificity of the hairpin ribozyme. Sequence requirements surrounding the cleavage site. J Biol Chem 274:29376–29380 [CrossRef]
    [Google Scholar]
  30. Puerta-Fernández E., Barroso-delJesus A., Romero-López C., Berzal-Herranz A. 2003a; HIV-1 TAR as anchoring site for optimized catalytic RNAs. Biol Chem 384:343–350
    [Google Scholar]
  31. Puerta-Fernández E., Romero-López C., Barroso-delJesus A., Berzal-Herranz A. 2003b; Ribozymes: recent advances in the development of RNA tools. FEMS Microbiol Rev 27:75–97 [CrossRef]
    [Google Scholar]
  32. Puerta-Fernández E., Barroso-delJesus A., Romero-López C., Tapia N., Martínez M. A., Berzal-Herranz A. 2005; Inhibition of HIV-1 replication by RNA targeted against the LTR region. AIDS 19:863–870 [CrossRef]
    [Google Scholar]
  33. Ray P. S., Das S. 2004; Inhibition of hepatitis C virus IRES-mediated translation by small RNAs analogous to stem–loop structures of the 5′-untranslated region. Nucleic Acids Res 32:1678–1687 [CrossRef]
    [Google Scholar]
  34. Reynolds J. E., Kaminski A., Kettinen H. J., Grace K., Clarke B. E., Carroll A. R., Rowlands D. J., Jackson R. J. 1995; Unique features of internal initiation of hepatitis C virus RNA translation. EMBO J 14:6010–6020
    [Google Scholar]
  35. Rijnbrand R., Abell G., Lemon S. M. 2000; Mutational analysis of the GB virus B internal ribosome entry site. J Virol 74:773–783 [CrossRef]
    [Google Scholar]
  36. Romero-López C., Barroso-delJesus A., Puerta-Fernández E., Berzal-Herranz A. 2005; Interfering with hepatitis C virus IRES activity using RNA molecules identified by a novel in vitro selection method. Biol Chem 386:183–190
    [Google Scholar]
  37. Romero-López C., Sánchez-Luque F. J., Berzal-Herranz A. 2006; Targets and tools: recent advances in the development of anti-HCV nucleic acids. Infect Disord Drug Targets 6:121–145 [CrossRef]
    [Google Scholar]
  38. Romero-López C., Díaz-González R., Berzal-Herranz A. 2007; Inhibition of hepatitis C virus internal ribosome entry site-mediated translation by an RNA targeting the conserved IIIf domain. Cell Mol Life Sci 64:2994–3006 [CrossRef]
    [Google Scholar]
  39. Sbardellati A., Scarselli E., Tomei L., Kekule A. S., Traboni C. 1999; Identification of a novel sequence at the 3′ end of the GB virus B genome. J Virol 73:10546–10550
    [Google Scholar]
  40. Tallet-López B., Aldaz-Carroll L., Chabas S., Dausse E., Staedel C., Toulmé J. J. 2003; Antisense oligonucleotides targeted to the domain IIId of the hepatitis C virus IRES compete with 40S ribosomal subunit binding and prevent in vitro translation. Nucleic Acids Res 31:734–742 [CrossRef]
    [Google Scholar]
  41. Toulmé J. J., Darfeuille F., Kolb G., Chabas S., Staedel C. 2003; Modulating viral gene expression by aptamers to RNA structures. Biol Cell 95:229–238 [CrossRef]
    [Google Scholar]
  42. Tsukiyama-Kohara K., Iizuka N., Kohara M., Nomoto A. 1992; Internal ribosome entry site within hepatitis C virus RNA. J Virol 66:1476–1483
    [Google Scholar]
  43. Wang C., Sarnow P., Siddiqui A. 1993; Translation of human hepatitis C virus RNA in cultured cells is mediated by an internal ribosome-binding mechanism. J Virol 67:3338–3344
    [Google Scholar]
  44. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.008821-0
Loading
/content/journal/jgv/10.1099/vir.0.008821-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error