1887

Abstract

Classical swine fever (CSF), caused by a virus of the same name (CSFV), is a highly contagious swine pyrexic disease featuring extensive haemorrhagic lesions and leukopenia, but little is known about the molecular mechanisms of its pathogenesis. To gain insight into the interaction between the virus and host cells, microarray analyses were performed to detect alterations in genomic expression of pig peripheral blood leukocytes (PBLs) following CSFV infection. Three healthy pigs were inoculated with a lethal dose of highly virulent CSFV strain Shimen. PBLs were isolated at the onset of typical clinical signs and total RNA was subjected to microarray analyses with Affymetrix Porcine Genome Array GeneChips. Of all 20 201 pig genes arrayed in the chip, 1745 showed altered expression (up- or downregulation) after infection. These were classified into eight functional groups, relating to cell proliferation (3.6 %), immune response (2.1 %), apoptosis (1.4 %), kinase activity (1.4 %), signal transduction (1.4 %), transcription (0.7 %), receptor activity (0.7 %) and cytokines/chemokines (0.4 %). The remaining 88.3 % of genes had unknown functions. Alterations in genomic expression were confirmed by real-time RT-PCR of selected cellular genes and Western blotting of annexin 2, a cellular protein relating to virus infection. The observed expression changes of numerous genes involved in immune and inflammatory responses and in the apoptosis process indicate that CSFV has developed sophisticated mechanisms to cause leukopenia in infected pigs. These data provide a basis for exploring the molecular pathogenesis of CSFV infection through an understanding of the interaction between viral and cellular components.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.009415-0
2009-07-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/7/1670.html?itemId=/content/journal/jgv/10.1099/vir.0.009415-0&mimeType=html&fmt=ahah

References

  1. Bartosch B., Dubuisson J., Cosset F. L. 2003; Infectious hepatitis C virus pseudo-particles containing functional E1–E2 envelope protein complexes. J Exp Med 197:633–642 [CrossRef]
    [Google Scholar]
  2. Beg A. A., Baltimore D. 1996; An essential role for NF- κ B in preventing TNF- α -induced cell death. Science 274:782–784 [CrossRef]
    [Google Scholar]
  3. Behar S. M., Porcelli S. A. 2007; CD1-restricted T cells in host defense to infectious diseases. Curr Top Microbiol Immunol 314:215–250
    [Google Scholar]
  4. Bensaude E., Turner J. L. E., Wakeley P. R., Sweetman D. A., Pardieu C., Drew T. W., Wileman T., Powell P. P. 2004; Classical swine fever virus induces proinflammatory cytokines and tissue factor expression and inhibits apoptosis and interferon synthesis during the establishment of long-term infection of porcine vascular endothelial cells. J Gen Virol 85:1029–1037 [CrossRef]
    [Google Scholar]
  5. Boldin M. P., Goncharov T. M., Goltseve Y. V., Wallach D. 1996; Involvement of MACH, a novel MORT1/FADD-interacting protease, in Fas/APO-1- and TNF receptor-induced cell death. Cell 85:803–815 [CrossRef]
    [Google Scholar]
  6. Borca M. V., Gudmundsdottir I., Fernández-Sainz I.J., Holinka L.G., Risatti G. R. 2008; Patterns of cellular gene expression in swine macrophages infected with highly virulent classical swine fever virus strain Brescia. Virus Res 138:89–96 [CrossRef]
    [Google Scholar]
  7. Bresgen N., Ohlenschläger I., Fiedler B., Wacht N., Zach S., Dunkelmann B., Arosio P., Kuffner E., Lottspeich F., Eckl P. M. 2007; Ferritin – a mediator of apoptosis?. J Cell Physiol 212:157–164 [CrossRef]
    [Google Scholar]
  8. Bruey J. M., Ducasse C., Bonniaud P., Ravagnan L., Susin S. A., Diaz-Latoud C., Gurbuxani S., Arrigo A. P., Kroemer G. other authors 2000; Hsp27 negatively regulates cell death by interacting with cytochrome c . Nat Cell Biol 2:645–652 [CrossRef]
    [Google Scholar]
  9. Capparelli R., Alfano F., Amoroso M. G., Borriello G., Fenizia D., Bianco A., Roperto S., Roperto F., Iannelli D. 2007; Protective effect of the Nramp1 BB genotype against Brucella abortus in the water buffalo ( Bubalus bubalis ). Infect Immun 75:988–996 [CrossRef]
    [Google Scholar]
  10. Carrasco C. P., Rigden R. C., Vincent I. E., Balmelli C., Ceppi M., Bauhofer O., Tâche V., Hjertner B., McNeilly F. other authors 2004; Interaction of classical swine fever virus with dendritic cells. J Gen Virol 85:1633–1641 [CrossRef]
    [Google Scholar]
  11. Chattergoon M. A., Muthumani K., Tamura Y., Ramanathan M., Shames J. P., Saulino V., Robinson T. M., Montaner L. J., Weiner D. B. 2008; DR5 activation of caspase-8 induces DC maturation and immune enhancement in vivo. Mol Ther 16:419–426 [CrossRef]
    [Google Scholar]
  12. Choi C., Hwang K.-K., Chae C. 2004; Classical swine fever virus induces tumor necrosis factor- α and lymphocyte apoptosis. Arch Virol 149:875–889 [CrossRef]
    [Google Scholar]
  13. Clapp N., Henke M., Hansard R., Carson R., Walsh R., Widomski D., Anglin C., Fretland D. 1993; Inflammatory mediator changes in cotton-top tamarins (CTT) after SC-41930 anti-colitic therapy. Agents Actions 39:C8–C10 [CrossRef]
    [Google Scholar]
  14. Concannon C. G., Orrenius S., Samali A. 2001; Hsp27 inhibits cytochrome c -mediated caspase activation by sequestering both pro-caspase-3 and cytochrome c . Gene Expr 9:195–201
    [Google Scholar]
  15. Demarchi F., Bertoli C., Greer P. A., Schneider C. 2005; Ceramide triggers an NF- κ B-dependent survival pathway through calpain. Cell Death Differ 12:512–522 [CrossRef]
    [Google Scholar]
  16. Drust D. S., Creutz C. E. 1988; Aggregation of chromaffin granules by calpactin at micromolar levels of calcium. Nature 331:88–91 [CrossRef]
    [Google Scholar]
  17. Fink J., Gu F., Ling L., Tolfvenstam T., Olfat F., Chin K. C., Aw P., George J., Kuznetsov V. A. other authors 2007; Host gene expression profiling of dengue virus infection in cell lines and patients. PLoS Negl Trop Dis 1:e86 [CrossRef]
    [Google Scholar]
  18. Genini S., Delputte P. L., Malinverni R., Cecere M., Stella A., Nauwynck H. J., Giuffra E. 2008; Genome-wide transcriptional response of primary alveolar macrophages following infection with porcine reproductive and respiratory syndrome virus. J Gen Virol 89:2550–2564 [CrossRef]
    [Google Scholar]
  19. George M. D., Sankarana S., Reaya E., Gellia A. C., Dandekar S. 2003; High-throughput gene expression profiling indicates dysregulation of intestinal cell cycle mediators and growth factors during primary simian immunodeficiency virus infection. Virology 312:84–94 [CrossRef]
    [Google Scholar]
  20. Georgopoulos N. T., Merrick A., Scott N., Selby P. J., Melcher A., Trejdosiewicz L. K. 2007; CD40-mediated death and cytokine secretion in colorectal cancer: a potential target for inflammatory tumour cell killing. Int J Cancer 121:1373–1381 [CrossRef]
    [Google Scholar]
  21. Goodkin M. L., Ting A. T., Blaho J. A. 2003; NF- κ B is required for apoptosis prevention during herpes simplex virus type 1 infection. J Virol 77:7261–7280 [CrossRef]
    [Google Scholar]
  22. Green D. R. 2000; Apoptotic pathways: paper wraps stone blunts scissors. Cell 102:1–4 [CrossRef]
    [Google Scholar]
  23. Grove J., Huby T., Stamataki Z., Vanwolleghem T., Meuleman P., Farquhar M., Schwarz A., Moreau M., Owen J. S. other authors 2007; Scavenger receptor BI and BII expression levels modulate hepatitis C virus infectivity. J Virol 81:3162–3169 [CrossRef]
    [Google Scholar]
  24. Gruenheid S., Pinner E., Desjardins M., Gros P. 1997; Natural resistance to infection with intracellular pathogens: the Nramp1 protein is recruited to the membrane of the phagosome. J Exp Med 185:717–730 [CrossRef]
    [Google Scholar]
  25. Jabado N., Jankowski A., Dougaparsad S., Picard V., Grinstein S., Gros P. 2000; Natural resistance to intracellular infections: natural resistance-associated macrophage protein 1 (Nramp1) functions as a pH-dependent manganese transporter at the phagosomal membrane. J Exp Med 192:1237–1248 [CrossRef]
    [Google Scholar]
  26. Ji W., Zhou W., Gregg K., Yu N., Davis S., Davis S. 2004; A method for cross-species gene expression analysis with high-density oligonucleotide arrays. Nucleic Acids Res 32:e93 [CrossRef]
    [Google Scholar]
  27. Kauffmann-Zeh A., Rodriguez-Viciana P., Ulrich E., Gilbert C., Coffer P., Downward J., Evan G. 1997; Suppression of c-Myc-induced apoptosis by Ras signaling through PI(3)K and PKB. Nature 385:544–548 [CrossRef]
    [Google Scholar]
  28. Lee W. C., Wang C., Chien M. S. 1999; Virus antigen expression and alterations in peripheral blood mononuclear cell subpopulations after classical swine fever virus infection. Vet Microbiol 67:17–29 [CrossRef]
    [Google Scholar]
  29. Li F., Ambrosini G., Chu E., Plescia J., Tognin S., Marchisio P. C., Altieri D. C. 1998; Control of apoptosis and mitotic spindle checkpoint by survivin. Nature 396:580–584 [CrossRef]
    [Google Scholar]
  30. Lin M., Lin F., Mallory M., Clavijo A. 2000; Deletions of structural glycoprotein E2 of classical swine fever virus strain Alfort/187 resolve a lineal epitope of monoclonal antibody WH303 and the minimal N terminal domain essential for binding immunoglobulin G antibodies of a pig hyperimmune serum. J Virol 74:11619–11625 [CrossRef]
    [Google Scholar]
  31. Liu Z. G., Hsu H., Goeddel D. V., Karin M. 1996; Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF- κ B activation prevents cell death. Cell 87:565–576 [CrossRef]
    [Google Scholar]
  32. Livak K. J., Schmittgen T. D. 2001; Analysis of relative gene expression data using real-time quantitative PCR and the [inline-graphic] method. Methods 25:402–428.[/inline-graphic] [CrossRef]
    [Google Scholar]
  33. Lockhart D. J., Dong H., Byrne M. C., Follettie M. T., Gallo M. V., Chee M. S., Mittmann M., Wang C., Kobayashi M. other authors 1996; Expression monitoring by hybridization to high-density oligonucleotide arrays. Nat Biotechnol 14:1675–1680 [CrossRef]
    [Google Scholar]
  34. Locksley R. M., Killeen N., Lenardo M. J. 2001; The TNF and TNF receptor superfamilies: integrating mammalian biology. Cell 104:487–501 [CrossRef]
    [Google Scholar]
  35. Luo X., Budihardjo I., Zou H., Slaughter C., Wang X. 1998; Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 94:481–490 [CrossRef]
    [Google Scholar]
  36. Ma G., Greenwell-Wild T., Lei K., Jin W., Swisher J., Hardegen N., Wild C. T., Wahl S. M. 2004; Secretory leukocyte protease inhibitor binds to annexin II, a cofactor for macrophage HIV-1 infection. J Exp Med 200:1337–1346 [CrossRef]
    [Google Scholar]
  37. Malhotra R., Ward M., Bright H., Priest R., Foster M. R., Hurle M., Blair E., Bird M. 2003; Isolation and characterisation of potential respiratory syncytial virus receptor(s) on epithelial cells. Microbes Infect 5:123–133 [CrossRef]
    [Google Scholar]
  38. Meyers G., Saalmüller A., Büttner M. 1999; Mutations abrogating the RNase activity in glycoprotein Erns of the pestivirus classical swine fever virus lead to virus attenuation. J Virol 73:10224–10235
    [Google Scholar]
  39. Mihaylova I., DeRuyter M., Rummens J. L., Bosmans E., Maes M. 2007; Decreased expression of CD69 in chronic fatigue syndrome in relation to inflammatory markers: evidence for a severe disorder in the early activation of T lymphocytes and natural killer cells. Neuroendocrinol Lett 28:477–483
    [Google Scholar]
  40. Munir S., Sharma J. M., Kapur V. 2005; Transcriptional response of avian cells to infection with Newcastle disease virus. Virus Res 107:103–108 [CrossRef]
    [Google Scholar]
  41. Pauly T., Weiland E., Hirt W., Dreyer-Bux C., Maurer S., Summerfield A., Saalmüller A. 1996; Differentiation between MHC-restricted and non-MHC-restricted porcine cytolytic T-lymphocytes. Immunology 88:238–246 [CrossRef]
    [Google Scholar]
  42. Rampton D. S., Collins C. E. 1993; Review article: thromboxanes in inflammatory bowel disease – pathogenic and therapeutic implications. Aliment Pharmacol Ther 7:357–367
    [Google Scholar]
  43. Ruggli N., Bird B. H., Liu L., Bauhofer O., Tratschin J.-D., Hofmann M. A. 2005; Npro of classical swine fever virus is an antagonist of double-stranded RNA-mediated apoptosis and IFN- α / β induction. Virology 340:265–276 [CrossRef]
    [Google Scholar]
  44. Ryzhova E. V., Vos R. M., Albright A. V., Harrist A. V., Harvey T., González-Scarano F. 2006; Annexin 2: a novel human immunodeficiency virus type 1 Gag binding protein involved in replication in monocyte-derived macrophages. J Virol 80:2694–2704 [CrossRef]
    [Google Scholar]
  45. Saalmüller A., Pauly T., Höhlich B. J., Pfaff E. 1999; Characterization of porcine T-lymphocytes and their immune response against viral antigens. J Biotechnol 73:223–233 [CrossRef]
    [Google Scholar]
  46. Samali A., Robertson J. D., Peterson E., Manero F., van Zeijl L., Paul C., Cotgreave I. A., Arrigo A. P., Orrenius S. 2001; Hsp27 protects mitochondria of thermotolerant cells against apoptotic stimuli. Cell Stress Chaperones 6:49–58 [CrossRef]
    [Google Scholar]
  47. Sánchez-Cordón P. J., Romanini S., Salguero F. J., Núñez A., Bautista M. J., Jover A., Gómez-Villamos J. C. 2002; Apoptosis of thymocytes related to cytokine expression in experimental classical swine fever. J Comp Pathol 127:239–248 [CrossRef]
    [Google Scholar]
  48. Sánchez-Cordón P. J., Núñez A., Salguero F. J., Pedrera M., Fernández de Marco M., Gómez-Villamos J. C. 2005; Lymphocyte apoptosis and thrombocytopenia in spleen during classical swine fever: role of macrophages and cytokines. Vet Pathol 42:477–488 [CrossRef]
    [Google Scholar]
  49. Sato M., Mikami O., Kobayashi M., Nakajima Y. 2000; Apoptosis in the lymphatic organs of piglets inoculated with classical swine fever virus. Vet Microbiol 75:1–9 [CrossRef]
    [Google Scholar]
  50. Sato H., Honma R., Yoneda M., Miura R., Tsukiyama-Kohara K., Ikeda F., Seki T., Watanabe S., Kai C. 2008; Measles virus induces cell-type specific changes in gene expression. Virology 375:321–330 [CrossRef]
    [Google Scholar]
  51. Shah G., Azizian M., Bruch D., Mehta R., Kittur D. 2004; Cross-species comparison of gene expression between human and porcine tissue, using single microarray platform – preliminary results. Clin Transplant 18:Suppl. 1276–80 [CrossRef]
    [Google Scholar]
  52. Shedlock D. J., Hwang D., Choo A. Y., Chung C. W., Muthumani K., Weiner D. B. 2008; HIV-1 viral genes and mitochondrial apoptosis. Apoptosis 13:1088–1099 [CrossRef]
    [Google Scholar]
  53. Shi Z., Xu X., Tu C. 2007; Detection of classical swine fever virus by real-time RT-PCR. Chin J Prev Vet Med 29:467–470
    [Google Scholar]
  54. Solis M., Wilkinson P., Romieu R., Hernandez E., Wainberg M. A., Hiscott J. 2006; Gene expression profiling of the host response to HIV-1 B, C, or A/E infection in monocyte-derived dendritic cells. Virology 352:86–99 [CrossRef]
    [Google Scholar]
  55. Spink C. F., Gray L. C., Davies F. E., Morgan G. J., Bidwell J. L. 2007; Haplotypic structure across the I κ B α gene ( NFKBIA ) and association with multiple myeloma. Cancer Lett 246:92–99 [CrossRef]
    [Google Scholar]
  56. Summerfield A., Knötig S. M., McCullough K. C. 1998; Lymphocyte apoptosis during classical swine fever: implication of activation-induced cell death. J Virol 72:1853–1861
    [Google Scholar]
  57. Summerfield A., Knötig S. M., Tschudin R., McCullough K. C. 2000; Pathogenesis of granulocytopenia and bone marrow atrophy during classical swine fever involves apoptosis and necrosis of uninfected cells. Virology 272:50–60 [CrossRef]
    [Google Scholar]
  58. Summerfield A., McNeilly F., Walker I., Allan G., Knöetig S. M., McCullough K. C. 2001a; Depletion of CD4(+) and CD8(high+) T-cells before the onset of viraemia during classical swine fever. Vet Immunol Immunopathol 78:3–19 [CrossRef]
    [Google Scholar]
  59. Summerfield A., Zingleb K., Inumaru S., McCullough K. C. 2001b; Induction of apoptosis in bone marrow neutrophil-lineage cells by classical swine fever virus. J Gen Virol 82:1309–1318
    [Google Scholar]
  60. Sun J., Jiang Y., Shi Z., Yan Y., Guo H., He F., Tu C. 2009; Proteomic alteration of PK-15 cells after infection by classical swine fever virus. J Proteome Res in press
    [Google Scholar]
  61. Susa M., König M., Saalmüller A., Reddehase M. J., Thiel H. J. 1992; Pathogenesis of classical swine fever: B-lymphocyte deficiency caused by hog cholera virus. J Virol 66:1171–1175
    [Google Scholar]
  62. Thornberry N. A., Lazebnik Y. 1998; Caspases: enemies within. Science 281:1312–1316 [CrossRef]
    [Google Scholar]
  63. Thiel H.-J., Collett M. S., Gould E. A., Heinz F. X., Houghton M., Meyers G., Purcell R. H., Rice C. M. 2004; Family Flaviridae . In Virus Taxonomy: Eighth Report of the International Committee on Taxonomy of Viruses . pp 981–998Edited by Fauquet C. M., Mayo M., Maniloff J., Desselberger U., Ball L. A. San Diego, CA: Academic Press;
  64. Tobiasch E., Gunther L., Bach F. H. 2001; Heme oxygenase-1 protects pancreatic beta cells from apoptosis caused by various stimuli. J Investig Med 49:566–571 [CrossRef]
    [Google Scholar]
  65. Tsai S., Mir B., Martin A. C., Estrada J. L., Bischoff S. R., Hsieh W., Cassady J. P., Freking B. A., Nonneman D. J. other authors 2006; Detection of transcriptional difference of porcine imprinted genes using different microarray platforms. BMC Genomics 7:328 [CrossRef]
    [Google Scholar]
  66. Tsuburai T., Suzuki M., Nagashima Y., Suzuki S., Inoue S., Hashiba T., Ueda A., Ikehara K., Matsuse T., Ishigatsubo Y. 2002; Adenovirus-mediated transfer and overexpression of heme oxygenase 1 cDNA in lung prevents bleomycin-induced pulmonary fibrosis via a Fas–Fas ligand-independent pathway. Hum Gene Ther 13:1945–1960 [CrossRef]
    [Google Scholar]
  67. Ubol S., Kasisith J., Pitidhammabhorn D., Tepsumethanol V. 2005; Screening of pro-apoptotic genes upregulated in an experimental street rabies virus-infected neonatal mouse brain. Microbiol Immunol 49:423–431 [CrossRef]
    [Google Scholar]
  68. van der Molen E. J., van Oirschot J. T. 1981; Pathomorphological lesions in lymphoid tissues, kidney and adrenal of pigs with congenital persistent swine fever. Zentralbl Veterinarmed B 28:89–101
    [Google Scholar]
  69. van Oirschot J. T. 1999; Classical swine fever (hog cholera). In Diseases of Swine . , 8th edn. pp 159–172Edited by Straw B. E., D'Allaire S., Mengeling W. L., Taylor D. J. Ames, IA: Iowa State Press;
  70. Vidal S., Tremblay M. L., Govoni G., Gauthier S., Sebastiani G., Malo D., Skamene E., Olivier M., Jothy S., Gros P. 1995; The Ity/Lsh/Bcg locus: natural resistance to infection with intracellular parasites is abrogated by disruption of the Nramp1 gene. J Exp Med 182:655–666 [CrossRef]
    [Google Scholar]
  71. von Freyburg M., Ege A., Saalmüller A., Meyers G. 2004; Comparison of the effects of RNase-negative and wild-type classical swine fever virus on peripheral blood cells of infected pigs. J Gen Virol 85:1899–1908 [CrossRef]
    [Google Scholar]
  72. Wang Z., Nie Y., Wang P., Ding M., Deng H. 2004; Characterization of classical swine fever virus entry by using pseudotyped viruses: E1 and E2 are sufficient to mediate viral entry. Virology 330:332–341 [CrossRef]
    [Google Scholar]
  73. Wang Y., Qu L., Uthe J. J., Bearson S. M. D., Kuhar D., Lunney J. K., Couture O. P., Nettleton D., Dekkers J. C. M., Tuggle C. K. 2007; Global transcriptional response of porcine mesenteric lymph nodes to Salmonella enterica serovar Typhimurium. Genomics 90:72–84 [CrossRef]
    [Google Scholar]
  74. Webb N. R., Connell P. M., Graf G. A., Smart E. J., de Villiers W. J., de Beer F. C., van der Westhuyzen D. R. 1998; SR-BII, an isoform of the scavenger receptor BI containing an alternate cytoplasmic tail, mediates lipid transfer between high density lipoprotein and cells. J Biol Chem 273:15241–15248 [CrossRef]
    [Google Scholar]
  75. Wei M. C., Zong W. X., Cheng E. H., Lindsten T., Panoutsakopoulou V., Ross A. J., Roth K. A., MacGregor G. R., Thompson C. B., Korsmeyer S. J. 2001; Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730 [CrossRef]
    [Google Scholar]
  76. Yurochko A. D., Kowalik T. F., Huong S. M., Huang E. S. 1995; Human cytomegalovirus upregulates NF- κ B activity by transactivating the NF- κ B p105/p50 and p65 promoters. J Virol 69:5391–5400
    [Google Scholar]
  77. Zaffuto K. M., Piccone M. E., Burrage T. G., Balinsky C. A., Risatti G. R., Borca M. V., Holinka L. G., Rock D. L., Afonso C. L. 2007; Classical swine fever virus inhibits nitric oxide production in infected macrophages. J Gen Virol 88:3007–3012 [CrossRef]
    [Google Scholar]
  78. Zhao S. H., Recknor J., Lunney J. K., Nettleton D., Kuhar D., Orley S., Tuggle C. K. 2005; Validation of a first-generation long-oligonucleotide microarray for transcriptional profiling in the pig. Genomics 86:618–625 [CrossRef]
    [Google Scholar]
  79. Zwilling B. S., Kuhn D. E., Wikoff L., Brown D., Lafuse W. 1999; Role of iron in Nramp1-mediated inhibition of mycobacterial growth. Infect Immun 67:1386–1392
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.009415-0
Loading
/content/journal/jgv/10.1099/vir.0.009415-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error