1887

Abstract

An internal ribosome entry site (IRES) present in the 5′ untranslated region (UTR) promotes translation of classical swine fever virus (CSFV) genomes. Using an system with monocistronic reporter RNA containing the CSFV 5′UTR, this study found that CSFV NS5A decreased CSFV IRES-mediated translation in a dose-dependent manner. Deletion analysis showed that the region responsible for repressing CSFV IRES activity might cover aa  390–414, located in the C-terminal half of CSFV NS5A. Triple and single alanine-scanning mutagenesis revealed that the inhibitory effect on CSFV IRES-directed translation mapped to the K399, T401, E406 and L413 residues of NS5A. These important amino acids were also found to be present in the NS5A proteins of bovine viral diarrhea virus (BVDV)-1, BVDV-2, border disease virus and hepatitis C virus, indicating that NS5A may play an important role in the switch from translation to replication in these viruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.014472-0
2009-12-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/90/12/2923.html?itemId=/content/journal/jgv/10.1099/vir.0.014472-0&mimeType=html&fmt=ahah

References

  1. Barton D. J., Morasco B. J., Flanegan J. B. 1999; Translating ribosomes inhibit poliovirus negative-strand RNA synthesis. J Virol 73:10104–10112
    [Google Scholar]
  2. Becher P., Thiel H.-J. 2002; Genus Pestivirus ( Flaviviridae ). In The Springer Index of Viruses . pp 327–331Edited by Tidona C. A., Darai G. Heidelberg, Germany: Springer;
  3. Boni S., Lavergne J. P., Boulant S., Cahour A. 2005; Hepatitis C virus core protein acts as a trans -modulating factor on internal translation initiation of the viral RNA. J Biol Chem 280:17737–17748 [CrossRef]
    [Google Scholar]
  4. Cuthbert J. A. 1994; Hepatitis C: progress and problems. Clin Microbiol Rev 7:505–532
    [Google Scholar]
  5. De Lisle R. C. 1991; A quantitative dot-blot immunoassay for integral membrane proteins: preparation of pancreatic plasma membranes containing apical and basolateral domains. Anal Biochem 192:1–5 [CrossRef]
    [Google Scholar]
  6. Fletcher S. P., Jackson R. J. 2002; Pestivirus internal ribosome entry site (IRES) structure and function: elements in the 5′ untranslated region important for IRES function. J Virol 76:5024–5033 [CrossRef]
    [Google Scholar]
  7. Gamarnik A. V., Andino R. 1998; Switch from translation to RNA replication in a positive-stranded RNA virus. Genes Dev 12:2293–2304 [CrossRef]
    [Google Scholar]
  8. Gu B., Liu C., Lin-Goerke J., Maley D. R., Gutshall L. L., Feltenberger C. A., Del Vecchio A. M. 2000; The RNA helicase and nucleotide triphosphatase activities of the bovine viral diarrhea virus NS3 protein are essential for viral replication. J Virol 74:1794–1800 [CrossRef]
    [Google Scholar]
  9. He Y., Yan W., Coito C., Li Y., Gale M., Katze M. G. 2003; The regulation of hepatitis C virus (HCV) internal ribosome-entry site-mediated translation by HCV replicons and nonstructural proteins. J Gen Virol 84:535–543 [CrossRef]
    [Google Scholar]
  10. Heinz F. X., Collett M. S., Purcell R. H., Gould E. A., Howard C. R., Houghton M., Moormann R. J. M., Rice C. M., Thiel H.-J. 2000; Family Flaviviridae . In Virus Taxonomy. Seventh Report of the International Committee on Taxonomy of Viruses pp 859–878Edited by Fauquet C. M., van Regenmortel M. H. V., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner. San Diego, CA: Academic Press;
    [Google Scholar]
  11. Isken O., Grassmann C. W., Sarisky R. T., Kann M., Zhang S., Grosse F., Kao P. N., Behrens S. E. 2003; Members of the NF90/NFAR protein group are involved in the life cycle of a positive-strand RNA virus. EMBO J 22:5655–5665 [CrossRef]
    [Google Scholar]
  12. Isken O., Grassmann C. W., Yu H., Behrens S. E. 2004; Complex signals in the genomic 3′ nontranslated region of bovine viral diarrhea virus coordinate translation and replication of the viral RNA. RNA 10:1637–1652 [CrossRef]
    [Google Scholar]
  13. Kalliampakou K. I., Kalamvoki M., Mavromara P. 2005; Hepatitis C virus (HCV) NS5A protein downregulates HCV IRES-dependent translation. J Gen Virol 86:1015–1025 [CrossRef]
    [Google Scholar]
  14. Khromykh A. A., Sedlak P. L., Westaway E. G. 2000; cis - and trans -Acting elements in flavivirus RNA replication. J Virol 74:3253–3263 [CrossRef]
    [Google Scholar]
  15. Liang Y., Gillam S. 2001; Rubella virus RNA replication is cis -preferential and synthesis of negative- and positive-strand RNAs is regulated by the processing of nonstructural protein. Virology 282:307–319 [CrossRef]
    [Google Scholar]
  16. Masaki T., Suzuki R., Murakami K., Aizaki H., Ishii K., Murayama A., Date T., Matsuura Y., Miyamura T. other authors 2008; Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. J Virol 82:7964–7976 [CrossRef]
    [Google Scholar]
  17. Miyanari Y., Atsuzawa K., Usuda N., Watashi K., Hishiki T., Zayas M., Bartenschlager R., Wakita T., Hijikata M., Shimotohno K. 2007; The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 9:1089–1097 [CrossRef]
    [Google Scholar]
  18. Moennig V., Plagemann P. G. W. 1992; The pestiviruses. Adv Virus Res 41:53–98
    [Google Scholar]
  19. Myers T. M., Kolupaeva V. G., Mendez E., Baginski S. G., Frolov I., Hellen C. U., Rice C. M. 2001; Efficient translation initiation is required for replication of bovine viral diarrhea virus subgenomic replicons. J Virol 75:4226–4238 [CrossRef]
    [Google Scholar]
  20. Pankraz A., Thiel H. J., Becher P. 2005; Essential and nonessential elements in the 3′ nontranslated region of bovine viral diarrhea virus. J Virol 79:9119–9127 [CrossRef]
    [Google Scholar]
  21. Piccininni S., Varaklioti A., Nardelli M., Dave B., Raney K. D., McCarthy J. E. 2002; Modulation of the hepatitis C virus RNA-dependent RNA polymerase activity by the non-structural (NS) 3 helicase and the NS4B membrane protein. J Biol Chem 277:45670–45679 [CrossRef]
    [Google Scholar]
  22. Ryabova L., Volianik E., Kurnasov O., Spirin A., Wu Y., Kramers F. R. 1994; Coupled replication–translation of amplifiable messenger RNA. J Biol Chem 269:1501–1505
    [Google Scholar]
  23. Sheng C., Xiao M., Geng X., Liu J., Wang Y., Gu F. 2007; Characterization of interaction of classical swine fever virus NS3 helicase with 3′ untranslated region. Virus Res 129:43–53 [CrossRef]
    [Google Scholar]
  24. Shimoike T., Mimori S., Tani H., Matsuura Y., Miyamura T. 1999; Interaction of hepatitis C virus core protein with viral sense RNA and suppression of its translation. J Virol 73:9718–9725
    [Google Scholar]
  25. Steffens S., Thiel H. J., Behrens S. E. 1999; The RNA-dependent RNA polymerase of different members of the family Flaviviridae exhibits similar properties in vitro . J Gen Virol 80:2583–2590
    [Google Scholar]
  26. Suzich J. A., Tamura J. K., Palmer-Hill F., Warrener P., Grakoui A., Rice C. M., Feinstone S. M., Collett M. S. 1993; Hepatitis C virus NS3 protein polynucleotide-stimulated nucleoside triphosphatase and comparison with the related pestivirus and flavivirus enzymes. J Virol 67:6152–6158
    [Google Scholar]
  27. Tellinghuisen T. L., Marcotrigiano J., Gorbalenya A. E., Rice C. M. 2004; The NS5A protein of hepatitis C virus is a zinc metalloprotein. J Biol Chem 279:48576–48587 [CrossRef]
    [Google Scholar]
  28. Tellinghuisen T. L., Paulson M. S., Rice C. M. 2006; The NS5A protein of bovine viral diarrhea virus contains an essential zinc-binding site similar to that of the hepatitis C virus NS5A protein. J Virol 80:7450–7458 [CrossRef]
    [Google Scholar]
  29. Tellinghuisen T. L., Foss K. L., Treadaway J. C., Rice C. M. 2008; Identification of residues required for RNA replication in domains II and III of the hepatitis C virus NS5A protein. J Virol 82:1073–1083 [CrossRef]
    [Google Scholar]
  30. Wang Y., Xiao M., Chen J., Zhang W., Luo J., Bao K., Nie M., Chen J., Li B. 2007; Mutational analysis of the GDD sequence motif of classical swine fever virus RNA-dependent RNA polymerases. Virus Genes 34:63–65 [CrossRef]
    [Google Scholar]
  31. Warrener P., Collett M. S. 1995; Pestivirus NS3 (p80) protein possesses helicase activity. J Virol 69:1720–1726
    [Google Scholar]
  32. Wu S. C., Chang S. C., Wu H. Y., Liao P. J., Chang M. F. 2008; Hepatitis C virus NS5A protein down-regulates the expression of spindle gene Aspm through PKR-p38 signaling pathway. J Biol Chem 283:29396–29404 [CrossRef]
    [Google Scholar]
  33. Xiao M., Zhang C. Y., Pan Z. S., Wu H. X., Guo J. Q. 2002; Classical swine fever virus NS5B–GFP fusion possesses an RNA-dependent RNA polymerase activity. Arch Virol 147:1779–1785 [CrossRef]
    [Google Scholar]
  34. Xiao M., Chen J., Li B. 2003; RNA-dependent RNA polymerase activity of classical swine fever virus NS5B protein expressed in natural host cells. Acta Virol 47:79–85
    [Google Scholar]
  35. Xiao M., Gao J., Wang W., Wang Y., Chen J., Chen J., Li B. 2004; Specific interaction between the classical swine fever virus NS5B protein and the viral genome. Eur J Biochem 271:3888–3896 [CrossRef]
    [Google Scholar]
  36. Xiao M., Li H., Wang Y., Wang X., Wang W., Peng J., Chen J., Li B. 2006; Characterization of the N-terminal domain of classical swine fever virus RNA-dependent RNA polymerase. J Gen Virol 87:347–356 [CrossRef]
    [Google Scholar]
  37. Xiao M., Bai Y., Xu H., Geng X., Chen J., Wang Y., Chen J., Li B. 2008; Effect of NS3 and NS5B proteins on classical swine fever virus IRES-mediated translation and its host cellular translation. J Gen Virol 89:994–999 [CrossRef]
    [Google Scholar]
  38. Xu J., Mendez E., Caron P. R., Lin C., Murcko M. A., Collett M. C., Rice C. M. 1997; Bovine viral diarrhea virus: polyprotein cleavage sites, cofactor requirements, and molecular model of an enzyme essential for pestivirus replication. J Virol 71:5312–5322
    [Google Scholar]
  39. Yu H., Grassmann C. W., Behrens S. E. 1999; Sequence and structural elements at the 3′ terminus of bovine viral diarrhea virus genomic RNA: functional role during RNA replication. J Virol 73:3638–3648
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.014472-0
Loading
/content/journal/jgv/10.1099/vir.0.014472-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error