1887

Abstract

The flavivirus RNA genome contains a conserved cap-1 structure, GpppAG, at the 5′ end. Two mRNA cap methyltransferase (MTase) activities involved in the formation of the cap, the (guanine-7)- and the (nucleoside-2′)-MTases (2′-MTase), reside in a single domain of non-structural protein NS5 (NS5MTase). This study reports on the biochemical characterization of the 2′-MTase activity of NS5MTase of dengue virus (NS5MTase) using purified, short, capped RNA substrates (GpppAC or GpppAC). NS5MTase methylated both types of substrate exclusively at the 2′ position. The efficiency of 2′-methylation did not depend on the methylation of the 7 position. Using GpppAC and GpppAC substrates of increasing chain lengths, it was found that both NS5MTase 2′ activity and substrate binding increased before reaching a plateau at =5. Thus, the cap and 6 nt might define the interface providing efficient binding of enzyme and substrate. values for GpppAC and the co-substrate -adenosyl--methionine (AdoMet) were determined (0.39 and 3.26 μM, respectively). As reported for other AdoMet-dependent RNA and DNA MTases, the 2′-MTase activity of NS5MTase showed a low turnover of 3.25×10 s. Finally, an inhibition assay was set up and tested on GTP and AdoMet analogues as putative inhibitors of NS5MTase, which confirmed efficient inhibition by the reaction product -adenosyl-homocysteine (IC 0.34 μM) and sinefungin (IC 0.63 μM), demonstrating that the assay is sufficiently sensitive to conduct inhibitor screening and characterization assays.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.015511-0
2010-01-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/91/1/112.html?itemId=/content/journal/jgv/10.1099/vir.0.015511-0&mimeType=html&fmt=ahah

References

  1. Assenberg, R., Ren, J., Verma, A., Walter, T. S., Alderton, D., Hurrelbrink, R. J., Fuller, S. D., Bressanelli, S., Owens, R. J. & other authors(2007). Crystal structure of the Murray Valley encephalitis virus NS5 methyltransferase domain in complex with cap analogues. J Gen Virol 88, 2228–2236.[CrossRef] [Google Scholar]
  2. Barbosa, E. & Moss, B.(1978). mRNA(nucleoside-2′-)-methyltransferase from vaccinia virus. Characteristics and substrate specificity. J Biol Chem 253, 7698–7702. [Google Scholar]
  3. Bartelma, G. & Padmanabhan, R.(2002). Expression, purification, and characterization of the RNA 5′-triphosphatase activity of dengue virus type 2 nonstructural protein 3. Virology 299, 122–132.[CrossRef] [Google Scholar]
  4. Benarroch, D., Egloff, M. P., Mulard, L., Guerreiro, C., Romette, J. L. & Canard, B.(2004a). A structural basis for the inhibition of the NS5 dengue virus mRNA 2′-O-methyltransferase domain by ribavirin 5′-triphosphate. J Biol Chem 279, 35638–35643.[CrossRef] [Google Scholar]
  5. Benarroch, D., Selisko, B., Locatelli, G. A., Maga, G., Romette, J. L. & Canard, B.(2004b). The RNA helicase, nucleotide 5′-triphosphatase, and RNA 5′-triphosphatase activities of Dengue virus protein NS3 are Mg2+-dependent and require a functional Walker B motif in the helicase catalytic core. Virology 328, 208–218.[CrossRef] [Google Scholar]
  6. Bheemanaik, S., Reddy, Y. V. & Rao, D. N.(2006). Structure, function and mechanism of exocyclic DNA methyltransferases. Biochem J 399, 177–190.[CrossRef] [Google Scholar]
  7. Bollati, M., Milani, M., Mastrangelo, E., Ricagno, S., Tedeschi, G., Nonnis, S., Decroly, E., Selisko, B., de Lamballerie, X. & other authors(2009). Recognition of RNA cap in the Wesselsbron virus NS5 methyltransferase domain: implications for RNA-capping mechanisms in Flavivirus. J Mol Biol 385, 140–152.[CrossRef] [Google Scholar]
  8. Chrebet, G. L., Wisniewski, D., Perkins, A. L., Deng, Q., Kurtz, M. B., Marcy, A. & Parent, S. A.(2005). Cell-based assays to detect inhibitors of fungal mRNA capping enzymes and characterization of sinefungin as a cap methyltransferase inhibitor. J Biomol Screen 10, 355–364.[CrossRef] [Google Scholar]
  9. Decroly, E., Imbert, I., Coutard, B., Bouvet, M., Selisko, B., Alvarez, K., Gorbalenya, A. E., Snijder, E. J. & Canard, B.(2008). Coronavirus nonstructural protein 16 is a cap-0 binding enzyme possessing (nucleoside-2′O)-methyltransferase activity. J Virol 82, 8071–8084.[CrossRef] [Google Scholar]
  10. DeLean, A., Munson, P. J. & Rodbard, D.(1978). Simultaneous analysis of families of sigmoidal curves: application to bioassay, radioligand assay, and physiological dose–response curves. Am J Physiol 235, E97–E102. [Google Scholar]
  11. Dong, H., Ray, D., Ren, S., Zhang, B., Puig-Basagoiti, F., Takagi, Y., Ho, C. K., Li, H. & Shi, P. Y.(2007). Distinct RNA elements confer specificity to flavivirus RNA cap methylation events. J Virol 81, 4412–4421.[CrossRef] [Google Scholar]
  12. Dong, H., Ren, S., Zhang, B., Zhou, Y., Puig-Basagoiti, F., Li, H. & Shi, P. Y.(2008a). West Nile virus methyltransferase catalyzes two methylations of the viral RNA cap through a substrate-repositioning mechanism. J Virol 82, 4295–4307.[CrossRef] [Google Scholar]
  13. Dong, H., Zhang, B. & Shi, P. Y.(2008b). Flavivirus methyltransferase: a novel antiviral target. Antiviral Res 80, 1–10.[CrossRef] [Google Scholar]
  14. Egloff, M. P., Benarroch, D., Selisko, B., Romette, J. L. & Canard, B.(2002). An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: crystal structure and functional characterization. EMBO J 21, 2757–2768.[CrossRef] [Google Scholar]
  15. Egloff, M. P., Decroly, E., Malet, H., Selisko, B., Benarroch, D., Ferron, F. & Canard, B.(2007). Structural and functional analysis of methylation and 5′-RNA sequence requirements of short capped RNAs by the methyltransferase domain of dengue virus NS5. J Mol Biol 372, 723–736.[CrossRef] [Google Scholar]
  16. Furuichi, Y. & Shatkin, A. J.(2000). Viral and cellular mRNA capping: past and prospects. Adv Virus Res 55, 135–184. [Google Scholar]
  17. Geiss, B. J., Thompson, A. A., Andrews, A. J., Sons, R. L., Gari, H. H., Keenan, S. M. & Peersen, O. B.(2009). Analysis of flavivirus NS5 methyltransferase cap binding. J Mol Biol 385, 1643–1654.[CrossRef] [Google Scholar]
  18. Gu, M. & Lima, C. D.(2005). Processing the message: structural insights into capping and decapping mRNA. Curr Opin Struct Biol 15, 99–106.[CrossRef] [Google Scholar]
  19. Hodel, A. E., Gershon, P. D., Shi, X. & Quiocho, F. A.(1996). The 1.85 Å structure of vaccinia protein VP39: a bifunctional enzyme that participates in the modification of both mRNA ends. Cell 85, 247–256.[CrossRef] [Google Scholar]
  20. Hodel, A. E., Gershon, P. D. & Quiocho, F. A.(1998). Structural basis for sequence-nonspecific recognition of 5′-capped mRNA by a cap-modifying enzyme. Mol Cell 1, 443–447.[CrossRef] [Google Scholar]
  21. Hu, G., Oguro, A., Li, C., Gershon, P. D. & Quiocho, F. A.(2002). The “cap-binding slot” of an mRNA cap-binding protein: quantitative effects of aromatic side chain choice in the double-stacking sandwich with cap. Biochemistry 41, 7677–7687.[CrossRef] [Google Scholar]
  22. Jeffery, D. R. & Roth, J. A.(1987). Kinetic reaction mechanism for magnesium binding to membrane-bound and soluble catechol O-methyltransferase. Biochemistry 26, 2955–2958.[CrossRef] [Google Scholar]
  23. Kloor, D., Karnahl, K. & Kompf, J.(2004). Characterization of glycine N-methyltransferase from rabbit liver. Biochem Cell Biol 82, 369–374.[CrossRef] [Google Scholar]
  24. Kroschewski, H., Lim, S. P., Butcher, R. E., Yap, T. L., Lescar, J., Wright, P. J., Vasudevan, S. G. & Davidson, A. D.(2008). Mutagenesis of the dengue virus type 2 NS5 methyltransferase domain. J Biol Chem 283, 19410–19421.[CrossRef] [Google Scholar]
  25. Kuge, H., Brownlee, G. G., Gershon, P. D. & Richter, J. D.(1998). Cap ribose methylation of c-mos mRNA stimulates translation and oocyte maturation in Xenopus laevis. Nucleic Acids Res 26, 3208–3214.[CrossRef] [Google Scholar]
  26. Lampio, A., Ahola, T., Darzynkiewicz, E., Stepinski, J., Jankowska-Anyszka, M. & Kaariainen, L.(1999). Guanosine nucleotide analogs as inhibitors of alphavirus mRNA capping enzyme. Antiviral Res 42, 35–46.[CrossRef] [Google Scholar]
  27. Langberg, S. R. & Moss, B.(1981). Post-transcriptional modifications of mRNA. Purification and characterization of cap I and cap II RNA (nucleoside-2′-)-methyltransferases from HeLa cells. J Biol Chem 256, 10054–10060. [Google Scholar]
  28. Lescar, J., Luo, D., Xu, T., Sampath, A., Lim, S. P., Canard, B. & Vasudevan, S. G.(2008). Towards the design of antiviral inhibitors against flaviviruses: the case for the multifunctional NS3 protein from Dengue virus as a target. Antiviral Res 80, 94–101.[CrossRef] [Google Scholar]
  29. Li, J., Chorba, J. S. & Whelan, S. P.(2007). Vesicular stomatitis viruses resistant to the methylase inhibitor sinefungin upregulate RNA synthesis and reveal mutations that affect mRNA cap methylation. J Virol 81, 4104–4115.[CrossRef] [Google Scholar]
  30. Lim, S. P., Wen, D., Yap, T. L., Yan, C. K., Lescar, J. & Vasudevan, S. G.(2008). A scintillation proximity assay for dengue virus NS5 2′-O-methyltransferase – kinetic and inhibition analyses. Antiviral Res 80, 360–369.[CrossRef] [Google Scholar]
  31. Luo, D., Xu, T., Watson, R. P., Scherer-Becker, D., Sampath, A., Jahnke, W., Yeong, S. S., Wang, C. H., Lim, S. P. & other authors(2008). Insights into RNA unwinding and ATP hydrolysis by the flavivirus NS3 protein. EMBO J 27, 3209–3219.[CrossRef] [Google Scholar]
  32. Luzhkov, V. B., Selisko, B., Nordqvist, A., Peyrane, F., Decroly, E., Alvarez, K., Karlen, A., Canard, B. & Aqvist, J.(2007). Virtual screening and bioassay study of novel inhibitors for dengue virus mRNA cap (nucleoside-2′O)-methyltransferase. Bioorg Med Chem 15, 7795–7802.[CrossRef] [Google Scholar]
  33. Mastrangelo, E., Bollati, M., Milani, M., Selisko, B., Peyrane, F., Canard, B., Grard, G., de Lamballerie, X. & Bolognesi, M.(2007). Structural bases for substrate recognition and activity in Meaban virus nucleoside-2′-O-methyltransferase. Protein Sci 16, 1133–1145.[CrossRef] [Google Scholar]
  34. Milani, M., Mastrangelo, E., Bollati, M., Selisko, B., Decroly, E., Bouvet, M., Canard, B. & Bolognesi, M.(2009). Flaviviral methyltransferase/RNA interaction. Structural basis for enzyme inhibition. Antiviral Res 83, 28–34.[CrossRef] [Google Scholar]
  35. Muthukrishnan, S., Moss, B., Cooper, J. A. & Maxwell, E. S.(1978). Influence of 5′-terminal cap structure on the initiation of translation of vaccinia virus mRNA. J Biol Chem 253, 1710–1715. [Google Scholar]
  36. Osborne, T. C., Obianyo, O., Zhang, X., Cheng, X. & Thompson, P. R.(2007). Protein arginine methyltransferase 1: positively charged residues in substrate peptides distal to the site of methylation are important for substrate binding and catalysis. Biochemistry 46, 13370–13381.[CrossRef] [Google Scholar]
  37. Peyrane, F., Selisko, B., Decroly, E., Vasseur, J. J., Benarroch, D., Canard, B. & Alvarez, K.(2007). High-yield production of short GpppA- and 7MeGpppA-capped RNAs and HPLC-monitoring of methyltransfer reactions at the guanine-N7 and adenosine-2′O positions. Nucleic Acids Res 35, e26[CrossRef] [Google Scholar]
  38. Pugh, C. S. & Borchardt, R. T.(1982). Effects of S-adenosylhomocysteine analogues on vaccinia viral messenger ribonucleic acid synthesis and methylation. Biochemistry 21, 1535–1541.[CrossRef] [Google Scholar]
  39. Pugh, C. S., Borchardt, R. T. & Stone, H. O.(1978). Sinefungin, a potent inhibitor of virion mRNA(guanine-7-)-methyltransferase, mRNA(nucleoside-2′-)-methyltransferase, and viral multiplication. J Biol Chem 253, 4075–4077. [Google Scholar]
  40. Ray, D., Shah, A., Tilgner, M., Guo, Y., Zhao, Y., Dong, H., Deas, T. S., Zhou, Y., Li, H. & Shi, P. Y.(2006). West Nile virus 5′-cap structure is formed by sequential guanine N-7 and ribose 2′-O methylations by nonstructural protein 5. J Virol 80, 8362–8370.[CrossRef] [Google Scholar]
  41. Schubert, H. L., Blumenthal, R. M. & Cheng, X.(2003). Many paths to methyltransfer: a chronicle of convergence. Trends Biochem Sci 28, 329–335.[CrossRef] [Google Scholar]
  42. Selisko, B., Dutartre, H., Guillemot, J. C., Debarnot, C., Benarroch, D., Khromykh, A., Despres, P., Egloff, M. P. & Canard, B.(2006). Comparative mechanistic studies of de novo RNA synthesis by flavivirus RNA-dependent RNA polymerases. Virology 351, 145–158.[CrossRef] [Google Scholar]
  43. Shuman, S.(2001). Structure, mechanism, and evolution of the mRNA capping apparatus. Prog Nucleic Acid Res Mol Biol 66, 1–40. [Google Scholar]
  44. Woodcock, D. M., Adams, J. K., Allan, R. G. & Cooper, I. A.(1983). Effect of several inhibitors of enzymatic DNA methylation on the in vivo methylation of different classes of DNA sequences in a cultured human cell line. Nucleic Acids Res 11, 489–499.[CrossRef] [Google Scholar]
  45. Yap, T. L., Xu, T., Chen, Y. L., Malet, H., Egloff, M. P., Canard, B., Vasudevan, S. G. & Lescar, J.(2007). Crystal structure of the dengue virus RNA-dependent RNA polymerase catalytic domain at 1.85-angstrom resolution. J Virol 81, 4753–4765.[CrossRef] [Google Scholar]
  46. Zhang, B., Dong, H., Stein, D. A., Iversen, P. L. & Shi, P. Y.(2008). West Nile virus genome cyclization and RNA replication require two pairs of long-distance RNA interactions. Virology 373, 1–13.[CrossRef] [Google Scholar]
  47. Zhou, Y., Ray, D., Zhao, Y., Dong, H., Ren, S., Li, Z., Guo, Y., Bernard, K. A., Shi, P. Y. & Li, H.(2007). Structure and function of flavivirus NS5 methyltransferase. J Virol 81, 3891–3903.[CrossRef] [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.015511-0
Loading
/content/journal/jgv/10.1099/vir.0.015511-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error