1887

Abstract

Previous reports revealed that the M3 gene of both avian and mammalian reoviruses express two isoforms of the non-structural protein μNS in infected cells. The larger isoforms initiate translation at the AUG codon closest to the 5′ end of their respective m3 mRNAs, and were therefore designated μNS. In this study we have performed experiments to identify the molecular mechanisms by which the smaller μNS isoforms are generated. The results of this study confirmed the previous findings indicating that the smaller mammalian reovirus μNS isoform is a primary translation product, the translation of which is initiated at the internal AUG-41 codon of mammalian reovirus m3 mRNA. Our results further revealed that the smaller avian reovirus μNS isoform originates from a specific post-translational cleavage site near the amino terminus of μNS. This cleavage produces a 55 kDa carboxy-terminal protein, termed μNSC, and a 17 kDa amino-terminal polypeptide, designated μNSN. These results allowed us to extend the known avian reovirus protein-encoding capacity to 18 proteins, 12 of which are structural proteins and six of which are non-structural proteins. Our finding that avian and mammalian reoviruses use different mechanisms to express their μNSC isoforms suggests that these isoforms are important for reovirus replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.036459-0
2011-11-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/92/11/2566.html?itemId=/content/journal/jgv/10.1099/vir.0.036459-0&mimeType=html&fmt=ahah

References

  1. Arnold M. M., Murray K. E., Nibert M. L. 2008; Formation of the factory matrix is an important, though not a sufficient function of nonstructural protein μNS during reovirus infection. Virology 375:412–423 [View Article][PubMed]
    [Google Scholar]
  2. Banerjee A. K., Shatkin A. J. 1970; Transcription in vitro by reovirus-associated ribonucleic acid-dependent polymerase. J Virol 6:1–11[PubMed] [CrossRef]
    [Google Scholar]
  3. Becker M. M., Peters T. R., Dermody T. S. 2003; Reovirus σNS and μNS proteins form cytoplasmic inclusion structures in the absence of viral infection. J Virol 77:5948–5963 [View Article][PubMed]
    [Google Scholar]
  4. Benavente J., Martínez-Costas J. 2007; Avian reovirus: structure and biology. Virus Res 123:105–119 [View Article][PubMed]
    [Google Scholar]
  5. Brandariz-Nuñez A., Menaya-Vargas R., Benavente J., Martinez-Costas J. 2010; Avian reovirus μNS protein forms homo-oligomeric inclusions in a microtubule-independent fashion, which involves specific regions of its C-terminal domain. J Virol 84:4289–4301 [View Article][PubMed]
    [Google Scholar]
  6. Broering T. J., Parker J. S., Joyce P. L., Kim J., Nibert M. L. 2002; Mammalian reovirus nonstructural protein μNS forms large inclusions and colocalizes with reovirus microtubule-associated protein μ2 in transfected cells. J Virol 76:8285–8297 [View Article][PubMed]
    [Google Scholar]
  7. Chappel J. D., Duncan R., Mertens P. P., Dermody T. S. 2005; Genus Orthoreovirus . . In Virus Taxonomy. Classification and Nomenclature of Viruses, Eighth report of the International Committee on the Taxonomy of Viruses Edited by Fauquet C. M., Mayo M. A., Manilof J. San Diego, CA: Elsevier/Academic Press;
    [Google Scholar]
  8. Ernst H., Shatkin A. J. 1985; Reovirus hemagglutinin mRNA codes for two polypeptides in overlapping reading frames. Proc Natl Acad Sci U S A 82:48–52 [View Article][PubMed]
    [Google Scholar]
  9. Fields B. N., Raine C. S., Baum S. G. 1971; Temperature-sensitive mutants of reovirus type 3: defects in viral maturation as studied by immunofluorescence and electron microscopy. Virology 43:569–578 [View Article][PubMed]
    [Google Scholar]
  10. Furuichi Y., Morgan M., Muthukrishnan S., Shatkin A. J. 1975; Reovirus messenger RNA contains a methylated, blocked 5′-terminal structure: m-7G(5′)ppp(5′)G-MpCp-. Proc Natl Acad Sci U S A 72:362–366 [View Article][PubMed]
    [Google Scholar]
  11. Grande A., Benavente J. 2000; Optimal conditions for the growth, purification and storage of the avian reovirus S1133. J Virol Methods 85:43–54 [View Article][PubMed]
    [Google Scholar]
  12. Jackson R. J. 2005; Alternative mechanisms of initiating translation of mammalian mRNAs. Biochem Soc Trans 33:1231–1241 [View Article][PubMed]
    [Google Scholar]
  13. Ji W. T., Lin F. L., Wang Y. C., Shih W. L., Lee L. H., Liu H. J. 2010; Intracellular cleavage of σA protein of avian reovirus. Virus Res 149:71–77 [View Article][PubMed]
    [Google Scholar]
  14. Kobayashi T., Chappell J. D., Danthi P., Dermody T. S. 2006; Gene-specific inhibition of reovirus replication by RNA interference. J Virol 80:9053–9063 [View Article][PubMed]
    [Google Scholar]
  15. Kobayashi T., Ooms L. S., Chappell J. D., Dermody T. S. 2009; Identification of functional domains in reovirus replication proteins μNS and μ2. J Virol 83:2892–2906 [View Article][PubMed]
    [Google Scholar]
  16. Kozak M. 1991; Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266:19867–19870[PubMed]
    [Google Scholar]
  17. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [View Article][PubMed]
    [Google Scholar]
  18. Martinez-Costas J., Varela R., Benavente J. 1995; Endogenous enzymatic activities of the avian reovirus S1133: identification of the viral capping enzyme. Virology 206:1017–1026 [View Article][PubMed]
    [Google Scholar]
  19. Miller C. L., Broering T. J., Parker J. S., Arnold M. M., Nibert M. L. 2003; Reovirus σNS protein localizes to inclusions through an association requiring the μNS amino terminus. J Virol 77:4566–4576 [View Article][PubMed]
    [Google Scholar]
  20. Miller C. L., Arnold M. M., Broering T. J., Hastings C. E., Nibert M. L. 2010; Localization of mammalian orthoreovirus proteins to cytoplasmic factory-like structures via nonoverlapping regions of μNS. J Virol 84:867–882 [View Article][PubMed]
    [Google Scholar]
  21. Nibert M. L., Fields B. N. 1992; A carboxy-terminal fragment of protein mu 1/mu 1C is present in infectious subvirion particles of mammalian reoviruses and is proposed to have a role in penetration. J Virol 66:6408–6418[PubMed]
    [Google Scholar]
  22. Nibert M. L., Schiff L. A. 2001; Reoviruses and their replication. In Fields Virology pp. 1679–1728 Edited by Knipe D. M., Howley P. M., Griffin D. E., Lamb R. A., Martin M. A., Roizman B., Straus S. E. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  23. Racine T., Barry C., Roy K., Dawe S. J., Shmulevitz M., Duncan R. 2007; Leaky scanning and scanning-independent ribosome migration on the tricistronic S1 mRNA of avian reovirus. J Biol Chem 282:25613–25622 [View Article][PubMed]
    [Google Scholar]
  24. Ruan H., Hill J. R., Fatemie-Nainie S., Morris D. R. 1994; Cell-specific translational regulation of S-adenosylmethionine decarboxylase mRNA. Influence of the structure of the 5′ transcript leader on regulation by the upstream open reading frame. J Biol Chem 269:17905–17910[PubMed]
    [Google Scholar]
  25. Schägger H., von Jagow G. 1987; Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Anal Biochem 166:368–379 [View Article][PubMed]
    [Google Scholar]
  26. Sedman S. A., Gelembiuk G. W., Mertz J. E. 1990; Translation initiation at a downstream AUG occurs with increased efficiency when the upstream AUG is located very close to the 5′ cap. J Virol 64:453–457[PubMed]
    [Google Scholar]
  27. Sonenberg N., Hinnebusch A. G. 2009; Regulation of translation initiation in eukaryotes: mechanisms and biological targets. Cell 136:731–745 [View Article][PubMed]
    [Google Scholar]
  28. Spiropoulou C. F., Nichol S. T. 1993; A small highly basic protein is encoded in overlapping frame within the P gene of vesicular stomatitis virus. J Virol 67:3103–3110[PubMed]
    [Google Scholar]
  29. Tourís-Otero F., Cortez-San Martín M., Martínez-Costas J., Benavente J. 2004a; Avian reovirus morphogenesis occurs within viral factories and begins with the selective recruitment of σNS and λA to μNS inclusions. J Mol Biol 341:361–374 [View Article][PubMed]
    [Google Scholar]
  30. Tourís-Otero F., Martínez-Costas J., Vakharia V. N., Benavente J. 2004b; Avian reovirus nonstructural protein μNS forms viroplasm-like inclusions and recruits protein σNS to these structures. Virology 319:94–106 [View Article][PubMed]
    [Google Scholar]
  31. Varela R., Martínez-Costas J., Mallo M., Benavente J. 1996; Intracellular posttranslational modifications of S1133 avian reovirus proteins. J Virol 70:2974–2981[PubMed]
    [Google Scholar]
  32. Wiener J. R., Bartlett J. A., Joklik W. K. 1989; The sequences of reovirus serotype 3 genome segments M1 and M3 encoding the minor protein μ 2 and the major nonstructural protein μ NS, respectively. Virology 169:293–304 [View Article][PubMed]
    [Google Scholar]
  33. Zhang X., Tang J., Walker S. B., O’Hara D., Nibert M. L., Duncan R., Baker T. S. 2005; Structure of avian orthoreovirus virion by electron cryomicroscopy and image reconstruction. Virology 343:25–35 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.036459-0
Loading
/content/journal/jgv/10.1099/vir.0.036459-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error