1887

Abstract

Members of the family are important pathogens of humans and animals, although compared with the thousands of known bird species (>10 000), only a few ( = 11) picornaviruses have been identified from avian sources. This study reports the metagenomic detection and complete genome characterization of a novel turkey picornavirus from faecal samples collected from eight turkey farms in Hungary. Using RT-PCR, both healthy (two of three) and affected (seven of eight) commercial turkeys with enteric and/or stunting syndrome were shown to be shedding viruses in seven (88 %) of the eight farms. The viral genome sequence (turkey/M176/2011/HUN; GenBank accession no. JQ691613) shows a high degree of amino acid sequence identity (96 %) to the partial P3 genome region of a picornavirus reported recently in turkey and chickens from the USA and probably belongs to the same species. In the P1 and P2 regions, turkey/M176/2011/HUN is related most closely to, but distinct from, the kobuviruses and turdivirus 1. Complete genome analysis revealed the presence of characteristic picornaviral amino acid motifs, a potential type II-like 5′ UTR internal ribosome entry site (first identified among avian-origin picornaviruses) and a conserved, 48 nt long ‘barbell-like’ structure found at the 3′ UTR of turkey/M176/2011/HUN and members of the picornavirus genera and . The general presence of turkey picornavirus – a novel picornavirus species – in faecal samples from healthy and affected turkeys in Hungary and in the USA suggests the worldwide occurrence and endemic circulation of this virus in turkey farms. Further studies are needed to investigate the aetiological role and pathogenic potential of this picornavirus in food animals.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.043224-0
2012-10-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/93/10/2171.html?itemId=/content/journal/jgv/10.1099/vir.0.043224-0&mimeType=html&fmt=ahah

References

  1. Alexandersen S., Knowles N. J., Dekker A., Belsham G. J., Zhang Z., Koenen F. 2012; Picornaviruses. In Diseases of Swine, 10th edn. pp. 587–620 Edited by Zimmerman J. J., Karriker L. A., Ramirez A., Schwartz K. J., Stevenson G. W. Chichester, UK: Wiley;
    [Google Scholar]
  2. Bailey D., Karakasiliotis I., Vashist S., Chung L. M., Rees J., McFadden N., Benson A., Yarovinsky F., Simmonds P., Goodfellow I. 2010; Functional analysis of RNA structures present at the 3′ extremity of the murine norovirus genome: the variable polypyrimidine tract plays a role in viral virulence. J Virol 84:2859–2870 [View Article][PubMed]
    [Google Scholar]
  3. Bazan J. F., Fletterick R. J. 1988; Viral cysteine proteases are homologous to the trypsin-like family of serine proteases: structural and functional implications. Proc Natl Acad Sci U S A 85:7872–7876 [View Article][PubMed]
    [Google Scholar]
  4. Blom N., Hansen J., Brunak S., Blaas D. 1996; Cleavage site analysis in picornaviral polyproteins: discovering cellular targets by neural networks. Protein Sci 5:2203–2216 [View Article][PubMed]
    [Google Scholar]
  5. Boros Á., Pankovics P., Simmonds P., Reuter G. 2011; Novel positive-sense, single-stranded RNA (+ssRNA) virus with di-cistronic genome from intestinal content of freshwater carp (Cyprinus carpio). PLoS ONE 6:e29145 [View Article][PubMed]
    [Google Scholar]
  6. Boros Á., Pankovics P., Knowles N. J., Reuter G. 2012; Natural interspecies recombinant bovine/porcine enterovirus in sheep. J Gen Virol 93:1941–1951 [View Article][PubMed]
    [Google Scholar]
  7. Chen H. H., Kong W. P., Roos R. P. 1995; The leader peptide of Theiler’s murine encephalomyelitis virus is a zinc-binding protein. J Virol 69:8076–8078[PubMed]
    [Google Scholar]
  8. Chow M., Newman J. F., Filman D., Hogle J. M., Rowlands D. J., Brown F. 1987; Myristylation of picornavirus capsid protein VP4 and its structural significance. Nature 327:482–486 [View Article][PubMed]
    [Google Scholar]
  9. Day J. M., Ballard L. L., Duke M. V., Scheffler B. E., Zsak L. 2010; Metagenomic analysis of the turkey gut RNA virus community. Virol J 7:313 [View Article][PubMed]
    [Google Scholar]
  10. Farkas T., Fey B., Hargitt E. III, Parcells M., Ladman B., Murgia M., Saif Y. 2012; Molecular detection of novel picornaviruses in chickens and turkeys. Virus Genes 44:262–272 [View Article][PubMed]
    [Google Scholar]
  11. Gorbalenya A. E., Donchenko A. P., Blinov V. M., Koonin E. V. 1989; Cysteine proteases of positive strand RNA viruses and chymotrypsin-like serine proteases. A distinct protein superfamily with a common structural fold. FEBS Lett 243:103–114 [View Article][PubMed]
    [Google Scholar]
  12. Gorbalenya A. E., Koonin E. V., Wolf Y. I. 1990; A new superfamily of putative NTP-binding domains encoded by genomes of small DNA and RNA viruses. FEBS Lett 262:145–148 [View Article][PubMed]
    [Google Scholar]
  13. Gorbalenya A. E., Koonin E. V., Lai M. M. 1991; Putative papain-related thiol proteases of positive-strand RNA viruses. Identification of rubi- and aphthovirus proteases and delineation of a novel conserved domain associated with proteases of rubi-, alpha- and coronaviruses. FEBS Lett 288:201–205 [View Article][PubMed]
    [Google Scholar]
  14. Honkavuori K. S., Shivaprasad H. L., Briese T., Street C., Hirschberg D. L., Hutchison S. K., Lipkin W. I. 2011; Novel picornavirus in Turkey poults with hepatitis, California, USA. Emerg Infect Dis 17:480–487[PubMed] [CrossRef]
    [Google Scholar]
  15. Hughes P. J., Stanway G. 2000; The 2A proteins of three diverse picornaviruses are related to each other and to the H-rev107 family of proteins involved in the control of cell proliferation. J Gen Virol 81:201–207[PubMed]
    [Google Scholar]
  16. Kapoor A., Victoria J., Simmonds P., Slikas E., Chieochansin T., Naeem A., Shaukat S., Sharif S., Alam M. M. other authors 2008; A highly prevalent and genetically diversified Picornaviridae genus in South Asian children. Proc Natl Acad Sci U S A 105:20482–20487 [View Article][PubMed]
    [Google Scholar]
  17. Kim M. C., Kwon Y. K., Joh S. J., Lindberg A. M., Kwon J. H., Kim J. H., Kim S. J. 2006; Molecular analysis of duck hepatitis virus type 1 reveals a novel lineage close to the genus Parechovirus in the family Picornaviridae . J Gen Virol 87:3307–3316 [View Article][PubMed]
    [Google Scholar]
  18. Knowles N. J., Hovi T., Hyypiä T., King A. M. Q., Lindberg A. M., Pallansch M. A., Palmenberg A. C., Simmonds P., Skern T. other authors 2012; Picornaviridae . In Virus Taxonomy: Classification and Nomenclature of Viruses: Ninth Report of the International Committee on Taxonomy of Viruses pp. 855–880 Edited by King A. M. Q., Adams M. J., Carstens E. B., Lefkowitz E. J. San Diego, CA: Elsevier;
    [Google Scholar]
  19. Kofstad T., Jonassen C. M. 2011; Screening of feral and wood pigeons for viruses harbouring a conserved mobile viral element: characterization of novel Astroviruses and Picornaviruses. PLoS ONE 6:e25964 [View Article][PubMed]
    [Google Scholar]
  20. Liu Y., Wimmer E., Paul A. V. 2009; Cis-acting RNA elements in human and animal plus-strand RNA viruses. Biochim Biophys Acta 1789:495–517 [View Article][PubMed]
    [Google Scholar]
  21. Makeyev A. V., Liebhaber S. A. 2002; The poly(C)-binding proteins: a multiplicity of functions and a search for mechanisms. RNA 8:265–278 [View Article][PubMed]
    [Google Scholar]
  22. Marchler-Bauer A., Lu S., Anderson J. B., Chitsaz F., Derbyshire M. K., DeWeese-Scott C., Fong J. H., Geer L. Y., Geer R. C. other authors 2011; cdd: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:database issueD225–D229 [View Article][PubMed]
    [Google Scholar]
  23. Marvil P., Knowles N. J., Mockett A. P., Britton P., Brown T. D. K., Cavanagh D. 1999; Avian encephalomyelitis virus is a picornavirus and is most closely related to hepatitis A virus. J Gen Virol 80:653–662[PubMed]
    [Google Scholar]
  24. Nicholas K. B., Nicholas H. B. 1997; GeneDoc: a tool for editing and annotating multiple sequence alignments. National Resource for Biomedical Supercomputing, accessed 2 December 2011. http://www.psc.edu/biomed/genedoc
  25. Pankovics P., Boros Á., Reuter G. 2012; Novel picornavirus in domesticated common quail (Coturnix coturnix) in Hungary. Arch Virol 157:525–530 [View Article][PubMed]
    [Google Scholar]
  26. Pantin-Jackwood M. J., Spackman E., Day J. M., Rives D. 2007; Periodic monitoring of commercial turkeys for enteric viruses indicates continuous presence of astrovirus and rotavirus on the farms. Avian Dis 51:674–680 [View Article][PubMed]
    [Google Scholar]
  27. Pantin-Jackwood M. J., Day J. M., Jackwood M. W., Spackman E. 2008; Enteric viruses detected by molecular methods in commercial chicken and turkey flocks in the United States between 2005 and 2006. Avian Dis 52:235–244 [View Article][PubMed]
    [Google Scholar]
  28. Pilipenko E. V., Poperechny K. V., Maslova S. V., Melchers W. J., Slot H. J., Agol V. I. 1996; Cis-element, oriR, involved in the initiation of (−) strand poliovirus RNA: a quasi-globular multi-domain RNA structure maintained by tertiary (‘kissing’) interactions. EMBO J 15:5428–5436[PubMed]
    [Google Scholar]
  29. Racaniello V. 2007; Picornaviridae: the viruses and their replication. In Fields Virology, fifth edn. pp. 795–838 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  30. Reuter G., Farkas T., Berke T., Jiang X., Matson D. O., Szücs G. 2002; Molecular epidemiology of human calicivirus gastroenteritis outbreaks in Hungary, 1998 to 2000. J Med Virol 68:390–398 [View Article][PubMed]
    [Google Scholar]
  31. Rohll J. B., Moon D. H., Evans D. J., Almond J. W. 1995; The 3′ untranslated region of picornavirus RNA: features required for efficient genome replication. J Virol 69:7835–7844[PubMed]
    [Google Scholar]
  32. Sawicka K., Bushell M., Spriggs K. A., Willis A. E. 2008; Polypyrimidine-tract-binding protein: a multifunctional RNA-binding protein. Biochem Soc Trans 36:641–647 [View Article][PubMed]
    [Google Scholar]
  33. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S. 2011; mega5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  34. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  35. Tseng C. H., Tsai H. J. 2007; Sequence analysis of a duck picornavirus isolate indicates that it together with porcine enterovirus type 8 and simian picornavirus type 2 should be assigned to a new picornavirus genus. Virus Res 129:104–114 [View Article][PubMed]
    [Google Scholar]
  36. Victoria J. G., Kapoor A., Li L., Blinkova O., Slikas B., Wang C., Naeem A., Zaidi S., Delwart E. 2009; Metagenomic analyses of viruses in stool samples from children with acute flaccid paralysis. J Virol 83:4642–4651 [View Article][PubMed]
    [Google Scholar]
  37. Woo P. C., Lau S. K., Yuen K. Y. 2006; Infectious diseases emerging from Chinese wet-markets: zoonotic origins of severe respiratory viral infections. Curr Opin Infect Dis 19:401–407 [View Article][PubMed]
    [Google Scholar]
  38. Woo P. C., Lau S. K., Huang Y., Lam C. S., Poon R. W., Tsoi H. W., Lee P., Tse H., Chan A. S. other authors 2010; Comparative analysis of six genome sequences of three novel picornaviruses, turdiviruses 1, 2 and 3, in dead wild birds, and proposal of two novel genera, Orthoturdivirus and Paraturdivirus, in the family Picornaviridae . J Gen Virol 91:2433–2448 [View Article][PubMed]
    [Google Scholar]
  39. Yamashita T., Sakae K., Tsuzuki H., Suzuki Y., Ishikawa N., Takeda N., Miyamura T., Yamazaki S. 1998; Complete nucleotide sequence and genetic organization of Aichi virus, a distinct member of the Picornaviridae associated with acute gastroenteritis in humans. J Virol 72:8408–8412[PubMed]
    [Google Scholar]
  40. Yu Y., Abaeva I. S., Marintchev A., Pestova T. V., Hellen C. U. T. 2011; Common conformational changes induced in type 2 picornavirus IRESs by cognate trans-acting factors. Nucleic Acids Res 39:4851–4865 [View Article][PubMed]
    [Google Scholar]
  41. Zuker M. 2003; Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31:3406–3415 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.043224-0
Loading
/content/journal/jgv/10.1099/vir.0.043224-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error