1887

Abstract

Dendritic cells (DCs) are permissive to murine norovirus (MNV) infection and However, their roles during infection are not well defined. To determine the role of DCs during infection, conventional DCs were depleted from CD11c-DTR mice and infected with a persistent MNV strain. Viral titres in the intestine and secondary lymphoid organs were determined at early time points during infection, and anti-MNV antibody responses were analysed later during infection. Depletion of conventional DCs resulted in increased viral loads in intestinal tissues, impaired generation of antibody responses, and a failure of MNV to efficiently infect lymphoid tissues. These data suggest that DCs play multiple roles in MNV pathogenesis, in both innate immunity and the efficient generation of adaptive immune responses against MNV, as well as by promoting the dissemination of MNV to secondary lymphoid tissues. This is the first study to probe the roles of DCs in controlling and/or facilitating a norovirus infection and provides the basis for further studies aimed at defining mechanisms by which DCs control MNV replication and promote viral dissemination.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.052134-0
2013-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/94/8/1761.html?itemId=/content/journal/jgv/10.1099/vir.0.052134-0&mimeType=html&fmt=ahah

References

  1. Bogunovic M., Ginhoux F., Helft J., Shang L., Hashimoto D., Greter M., Liu K., Jakubzick C., Ingersoll M. A. other authors 2009; Origin of the lamina propria dendritic cell network. Immunity 31:513–525 [View Article][PubMed]
    [Google Scholar]
  2. Browne E. P., Littman D. R. 2009; Myd88 is required for an antibody response to retroviral infection. PLoS Pathog 5:e1000298 [View Article][PubMed]
    [Google Scholar]
  3. Cadwell K., Patel K. K., Maloney N. S., Liu T. C., Ng A. C., Storer C. E., Head R. D., Xavier R., Stappenbeck T. S., Virgin H. W. 2010; Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell 141:1135–1145 [View Article][PubMed]
    [Google Scholar]
  4. Chachu K. A., LoBue A. D., Strong D. W., Baric R. S., Virgin H. W. 2008a; Immune mechanisms responsible for vaccination against and clearance of mucosal and lymphatic norovirus infection. PLoS Pathog 4:e1000236 [View Article][PubMed]
    [Google Scholar]
  5. Chachu K. A., Strong D. W., LoBue A. D., Wobus C. E., Baric R. S., Virgin H. W. IV 2008b; Antibody is critical for the clearance of murine norovirus infection. J Virol 82:6610–6617 [View Article][PubMed]
    [Google Scholar]
  6. Chen X., Leach D., Hunter D. A., Sanfelippo D., Buell E. J., Zemple S. J., Grayson M. H. 2011; Characterization of intestinal dendritic cells in murine norovirus infection. Open Immunol J 4:22–30 [View Article][PubMed]
    [Google Scholar]
  7. Coombes J. L., Siddiqui K. R., Arancibia-Cárcamo C. V., Hall J., Sun C. M., Belkaid Y., Powrie F. 2007; A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T cells via a TGF-β and retinoic acid-dependent mechanism. J Exp Med 204:1757–1764 [View Article][PubMed]
    [Google Scholar]
  8. Courreges M. C., Burzyn D., Nepomnaschy I., Piazzon I., Ross S. R. 2007; Critical role of dendritic cells in mouse mammary tumor virus in vivo infection. J Virol 81:3769–3777 [View Article][PubMed]
    [Google Scholar]
  9. Cox C., Cao S., Lu Y. 2009; Enhanced detection and study of murine norovirus-1 using a more efficient microglial cell line. Virol J 6:196 [View Article][PubMed]
    [Google Scholar]
  10. Denning T. L., Wang Y. C., Patel S. R., Williams I. R., Pulendran B. 2007; Lamina propria macrophages and dendritic cells differentially induce regulatory and interleukin 17-producing T cell responses. Nat Immunol 8:1086–1094 [View Article][PubMed]
    [Google Scholar]
  11. Fejer G., Drechsel L., Liese J., Schleicher U., Ruzsics Z., Imelli N., Greber U. F., Keck S., Hildenbrand B. other authors 2008; Key role of splenic myeloid DCs in the IFN-αβ response to adenoviruses in vivo . PLoS Pathog 4:e1000208 [View Article][PubMed]
    [Google Scholar]
  12. Franchi L., Kamada N., Nakamura Y., Burberry A., Kuffa P., Suzuki S., Shaw M. H., Kim Y. G., Núñez G. 2012; NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat Immunol 13:449–456 [View Article][PubMed]
    [Google Scholar]
  13. Geijtenbeek T. B., Kwon D. S., Torensma R., van Vliet S. J., van Duijnhoven G. C., Middel J., Cornelissen I. L., Nottet H. S., KewalRamani V. N. other authors 2000; DC-SIGN, a dendritic cell-specific HIV-1-binding protein that enhances trans-infection of T cells. Cell 100:587–597 [View Article][PubMed]
    [Google Scholar]
  14. Gonzalez S. F., Lukacs-Kornek V., Kuligowski M. P., Pitcher L. A., Degn S. E., Kim Y. A., Cloninger M. J., Martinez-Pomares L., Gordon S. other authors 2010; Capture of influenza by medullary dendritic cells via SIGN-R1 is essential for humoral immunity in draining lymph nodes. Nat Immunol 11:427–434 [View Article][PubMed]
    [Google Scholar]
  15. Gonzalez-Hernandez M. B., Bragazzi Cunha J., Wobus C. E. 2012; Plaque assay for murine norovirus. J Vis Exp 66:e4297 [View Article][PubMed]
    [Google Scholar]
  16. John B., Harris T. H., Tait E. D., Wilson E. H., Gregg B., Ng L. G., Mrass P., Roos D. S., Dzierszinski F. other authors 2009; Dynamic Imaging of CD8+ T cells and dendritic cells during infection with Toxoplasma gondii . PLoS Pathog 5:e1000505 [View Article][PubMed]
    [Google Scholar]
  17. Jung S., Unutmaz D., Wong P., Sano G., De los Santos K., Sparwasser T., Wu S., Vuthoori S., Ko K. other authors 2002; In vivo depletion of CD11c+ dendritic cells abrogates priming of CD8+ T cells by exogenous cell-associated antigens. Immunity 17:211–220 [View Article][PubMed]
    [Google Scholar]
  18. Karst S. M., Wobus C. E., Lay M., Davidson J., Virgin H. W. IV 2003; STAT1-dependent innate immunity to a Norwalk-like virus. Science 2991575–1578 [View Article][PubMed]
    [Google Scholar]
  19. Kassim S. H., Rajasagi N. K., Zhao X., Chervenak R., Jennings S. R. 2006; In vivo ablation of CD11c-positive dendritic cells increases susceptibility to herpes simplex virus type 1 infection and diminishes NK and T-cell responses. J Virol 80:3985–3993 [View Article][PubMed]
    [Google Scholar]
  20. Lemos M. P., Fan L., Lo D., Laufer T. M. 2003; CD8alpha+ and CD11b+ dendritic cell-restricted MHC class II controls Th1 CD4+ T cell immunity. J Immunol 171:5077–5084[PubMed] [CrossRef]
    [Google Scholar]
  21. Lencioni K. C., Seamons A., Treuting P. M., Maggio-Price L., Brabb T. 2008; Murine norovirus: an intercurrent variable in a mouse model of bacteria-induced inflammatory bowel disease. Comp Med 58:522–533[PubMed]
    [Google Scholar]
  22. Loof T. G., Rohde M., Chhatwal G. S., Jung S., Medina E. 2007; The contribution of dendritic cells to host defenses against Streptococcus pyogenes . J Infect Dis 196:1794–1803 [View Article][PubMed]
    [Google Scholar]
  23. Moltedo B., Li W., Yount J. S., Moran T. M. 2011; Unique type I interferon responses determine the functional fate of migratory lung dendritic cells during influenza virus infection. PLoS Pathog 7:e1002345 [View Article][PubMed]
    [Google Scholar]
  24. Mumphrey S. M., Changotra H., Moore T. N., Heimann-Nichols E. R., Wobus C. E., Reilly M. J., Moghadamfalahi M., Shukla D., Karst S. M. 2007; Murine norovirus 1 infection is associated with histopathological changes in immunocompetent hosts, but clinical disease is prevented by STAT1-dependent interferon responses. J Virol 81:3251–3263 [View Article][PubMed]
    [Google Scholar]
  25. Niess J. H., Brand S., Gu X., Landsman L., Jung S., McCormick B. A., Vyas J. M., Boes M., Ploegh H. L. other authors 2005; CX3CR1-mediated dendritic cell access to the intestinal lumen and bacterial clearance. Science 307254–258 [View Article][PubMed]
    [Google Scholar]
  26. Paik J., Fierce Y., Mai P. O., Phelps S. R., McDonald T., Treuting P., Drivdahl R., Brabb T., LeBoeuf R. other authors 2011; Murine norovirus increases atherosclerotic lesion size and macrophages in Ldlr−/− mice. Comp Med 61:330–338[PubMed]
    [Google Scholar]
  27. Pritchett-Corning K. R., Cosentino J., Clifford C. B. 2009; Contemporary prevalence of infectious agents in laboratory mice and rats. Lab Anim 43:165–173 [View Article][PubMed]
    [Google Scholar]
  28. Probst H. C., Tschannen K., Odermatt B., Schwendener R., Zinkernagel R. M., Van Den Broek M. 2005; Histological analysis of CD11c-DTR/GFP mice after in vivo depletion of dendritic cells. Clin Exp Immunol 141:398–404 [View Article][PubMed]
    [Google Scholar]
  29. Rescigno M. 2010; Functional specialization of antigen presenting cells in the gastrointestinal tract. Curr Opin Immunol 22:131–136 [View Article][PubMed]
    [Google Scholar]
  30. Sapoznikov A., Fischer J. A., Zaft T., Krauthgamer R., Dzionek A., Jung S. 2007; Organ-dependent in vivo priming of naive CD4+, but not CD8+, T cells by plasmacytoid dendritic cells. J Exp Med 204:1923–1933 [View Article][PubMed]
    [Google Scholar]
  31. Thackray L. B., Wobus C. E., Chachu K. A., Liu B., Alegre E. R., Henderson K. S., Kelley S. T., Virgin H. W. IV 2007; Murine noroviruses comprising a single genogroup exhibit biological diversity despite limited sequence divergence. J Virol 81:10460–10473 [View Article][PubMed]
    [Google Scholar]
  32. Thackray L. B., Duan E., Lazear H. M., Kambal A., Schreiber R. D., Diamond M. S., Virgin H. W. 2012; Critical role for interferon regulatory factor 3 (IRF-3) and IRF-7 in type I interferon-mediated control of murine norovirus replication. J Virol 86:13515–13523 [View Article][PubMed]
    [Google Scholar]
  33. Tittel A. P., Heuser C., Ohliger C., Llanto C., Yona S., Hämmerling G. J., Engel D. R., Garbi N., Kurts C. 2012; Functionally relevant neutrophilia in CD11c diphtheria toxin receptor transgenic mice. Nat Methods 9:385–390 [View Article][PubMed]
    [Google Scholar]
  34. Unkeless J. C. 1979; Characterization of a monoclonal antibody directed against mouse macrophage and lymphocyte Fc receptors. J Exp Med 150:580–596 [View Article][PubMed]
    [Google Scholar]
  35. Wobus C. E., Karst S. M., Thackray L. B., Chang K. O., Sosnovtsev S. V., Belliot G., Krug A., Mackenzie J. M., Green K. Y., Virgin H. W. 2004; Replication of Norovirus in cell culture reveals a tropism for dendritic cells and macrophages. PLoS Biol 2:e432 [View Article][PubMed]
    [Google Scholar]
  36. Wobus C. E., Thackray L. B., Virgin H. W. IV 2006; Murine norovirus: a model system to study norovirus biology and pathogenesis. J Virol 80:5104–5112 [View Article][PubMed]
    [Google Scholar]
  37. Zhu J., Huang X., Yang Y. 2007; Type I IFN signaling on both B and CD4 T cells is required for protective antibody response to adenovirus. J Immunol 178:3505–3510[PubMed] [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.052134-0
Loading
/content/journal/jgv/10.1099/vir.0.052134-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error