1887

Abstract

Pseudotype viruses are useful for studying the envelope proteins of harmful viruses. This work describes the pseudotyping of vesicular stomatitis virus (VSV) with the envelope glycoproteins of highly pathogenic avian influenza viruses. VSV lacking the homotypic glycoprotein (G) gene (VSVΔG) was used to express haemagglutinin (HA), neuraminidase (NA) or the combination of both. Propagation-competent pseudotype viruses were only obtained when HA and NA were expressed from the same vector genome. Pseudotype viruses containing HA from different H5 clades were neutralized specifically by immune sera directed against the corresponding clade. Fast and sensitive reading of test results was achieved by vector-mediated expression of GFP. Pseudotype viruses expressing a mutant VSV matrix protein showed restricted spread in IFN-competent cells. This pseudotype system will facilitate the detection of neutralizing antibodies against virulent influenza viruses, circumventing the need for high-level biosafety containment.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.065201-0
2014-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/95/8/1634.html?itemId=/content/journal/jgv/10.1099/vir.0.065201-0&mimeType=html&fmt=ahah

References

  1. Alberini I., Del Tordello E., Fasolo A., Temperton N. J., Galli G., Gentile C., Montomoli E., Hilbert A. K., Banzhoff A.other authors 2009; Pseudoparticle neutralization is a reliable assay to measure immunity and cross-reactivity to H5N1 influenza viruses. Vaccine 27:5998–6003 [View Article][PubMed]
    [Google Scholar]
  2. Ao Z., Patel A., Tran K., He X., Fowke K., Coombs K., Kobasa D., Kobinger G., Yao X. 2008; Characterization of a trypsin-dependent avian influenza H5N1-pseudotyped HIV vector system for high throughput screening of inhibitory molecules. Antiviral Res 79:12–18 [View Article][PubMed]
    [Google Scholar]
  3. Fields B. N., Hawkins K. 1967; Human infection with the virus of vesicular stomatitis during an epizootic. N Engl J Med 277:989–994 [View Article][PubMed]
    [Google Scholar]
  4. Gao R., Cao B., Hu Y., Feng Z., Wang D., Hu W., Chen J., Jie Z., Qiu H.other authors 2013; Human infection with a novel avian-origin influenza A (H7N9) virus. N Engl J Med 368:1888–1897 [View Article][PubMed]
    [Google Scholar]
  5. Geisbert T. W., Daddario-Dicaprio K. M., Geisbert J. B., Reed D. S., Feldmann F., Grolla A., Ströher U., Fritz E. A., Hensley L. E.other authors 2008; Vesicular stomatitis virus-based vaccines protect nonhuman primates against aerosol challenge with Ebola and Marburg viruses. Vaccine 26:6894–6900 [View Article][PubMed]
    [Google Scholar]
  6. Günther S., Feldmann H., Geisbert T. W., Hensley L. E., Rollin P. E., Nichol S. T., Ströher U., Artsob H., Peters C. J.other authors 2011; Management of accidental exposure to Ebola virus in the biosafety level 4 laboratory, Hamburg, Germany. J Infect Dis 204:Suppl 3S785–S790 [View Article][PubMed]
    [Google Scholar]
  7. Halbherr S. J., Brostoff T., Tippenhauer M., Locher S., Berger Rentsch M., Zimmer G. 2013; Vaccination with recombinant RNA replicon particles protects chickens from H5N1 highly pathogenic avian influenza virus. PLoS ONE 8:e66059 [View Article][PubMed]
    [Google Scholar]
  8. Hanika A., Larisch B., Steinmann E., Schwegmann-Wessels C., Herrler G., Zimmer G. 2005; Use of influenza C virus glycoprotein HEF for generation of vesicular stomatitis virus pseudotypes. J Gen Virol 86:1455–1465 [View Article][PubMed]
    [Google Scholar]
  9. Herfst S., Schrauwen E. J., Linster M., Chutinimitkul S., de Wit E., Munster V. J., Sorrell E. M., Bestebroer T. M., Burke D. F.other authors 2012; Airborne transmission of influenza A/H5N1 virus between ferrets. Science 336:1534–1541 [View Article][PubMed]
    [Google Scholar]
  10. Hoffmann M., Wu Y. J., Gerber M., Berger-Rentsch M., Heimrich B., Schwemmle M., Zimmer G. 2010; Fusion-active glycoprotein G mediates the cytotoxicity of vesicular stomatitis virus M mutants lacking host shut-off activity. J Gen Virol 91:2782–2793 [View Article][PubMed]
    [Google Scholar]
  11. Imai M., Watanabe T., Hatta M., Das S. C., Ozawa M., Shinya K., Zhong G., Hanson A., Katsura H.other authors 2012; Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets. Nature 486:420–428[PubMed]
    [Google Scholar]
  12. Kalhoro N. H., Veits J., Rautenschlein S., Zimmer G. 2009; A recombinant vesicular stomatitis virus replicon vaccine protects chickens from highly pathogenic avian influenza virus (H7N1). Vaccine 27:1174–1183 [View Article][PubMed]
    [Google Scholar]
  13. Klenk H. D., Garten W. 1994; Host cell proteases controlling virus pathogenicity. Trends Microbiol 2:39–43 [View Article][PubMed]
    [Google Scholar]
  14. Kretzschmar E., Buonocore L., Schnell M. J., Rose J. K. 1997; High-efficiency incorporation of functional influenza virus glycoproteins into recombinant vesicular stomatitis viruses. J Virol 71:5982–5989[PubMed]
    [Google Scholar]
  15. Mori K., Haruyama T., Nagata K. 2011; Tamiflu-resistant but HA-mediated cell-to-cell transmission through apical membranes of cell-associated influenza viruses. PLoS ONE 6:e28178 [View Article][PubMed]
    [Google Scholar]
  16. Palese P., Tobita K., Ueda M., Compans R. W. 1974; Characterization of temperature sensitive influenza virus mutants defective in neuraminidase. Virology 61:397–410 [View Article][PubMed]
    [Google Scholar]
  17. Schnell J. R., Chou J. J. 2008; Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591–595 [View Article][PubMed]
    [Google Scholar]
  18. Schnell M. J., Buonocore L., Kretzschmar E., Johnson E., Rose J. K. 1996; Foreign glycoproteins expressed from recombinant vesicular stomatitis viruses are incorporated efficiently into virus particles. Proc Natl Acad Sci U S A 93:11359–11365 [View Article][PubMed]
    [Google Scholar]
  19. Takada A., Robison C., Goto H., Sanchez A., Murti K. G., Whitt M. A., Kawaoka Y. 1997; A system for functional analysis of Ebola virus glycoprotein. Proc Natl Acad Sci U S A 94:14764–14769 [View Article][PubMed]
    [Google Scholar]
  20. Tsai C., Caillet C., Hu H., Zhou F., Ding H., Zhang G., Zhou B., Wang S., Lu S.other authors 2009; Measurement of neutralizing antibody responses against H5N1 clades in immunized mice and ferrets using pseudotypes expressing influenza hemagglutinin and neuraminidase. Vaccine 27:6777–6790 [View Article][PubMed]
    [Google Scholar]
  21. Wang W., Butler E. N., Veguilla V., Vassell R., Thomas J. T., Moos M. Jr, Ye Z., Hancock K., Weiss C. D. 2008; Establishment of retroviral pseudotypes with influenza hemagglutinins from H1, H3, and H5 subtypes for sensitive and specific detection of neutralizing antibodies. J Virol Methods 153:111–119 [View Article][PubMed]
    [Google Scholar]
  22. Wang W., Xie H., Ye Z., Vassell R., Weiss C. D. 2010; Characterization of lentiviral pseudotypes with influenza H5N1 hemagglutinin and their performance in neutralization assays. J Virol Methods 165:305–310 [View Article][PubMed]
    [Google Scholar]
  23. Zhang Y., Zhang Q., Kong H., Jiang Y., Gao Y., Deng G., Shi J., Tian G., Liu L.other authors 2013; H5N1 hybrid viruses bearing 2009/H1N1 virus genes transmit in guinea pigs by respiratory droplet. Science 340:1459–1463 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.065201-0
Loading
/content/journal/jgv/10.1099/vir.0.065201-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error