1887

Abstract

Sequence alignment of human herpesvirus DNases revealed that they share several conserved regions. One of these, the conserved motif D203…E225XK227 (D…EXK) in the sequence of Epstein–Barr virus (EBV) DNase, has a striking similarity to the catalytic sites of some other nucleases, including type II restriction endonucleases, λ exonuclease and H. The predicted secondary structures of these three residues were shown to resemble the three catalytic residues of type II restriction endonucleases. Site-directed mutagenesis was carried out to replace each of the acidic residues near the motif by residues with different properties. All substitutions of D203, E225 and K227 were shown to cause significant reductions in nuclease activity. Six other acidic residues, within the conserved regions, were also replaced by Asn or Gln. Five of these six variants retained nuclease activity and mutant D195N alone lost nuclease activity. The four charged residues, D195, D203, E225 and K227, of EBV DNase were found to be important for nuclease activity. Biochemical analysis indicated that the preference for divalent cations was altered from Mg to Mn for mutant E225D. The DNA-binding abilities of D203E, E225D and E225Q were shown to be similar to that of wild-type. However, K227 mutants were found to have variable DNA-binding abilities: K227G and K227N mutants retained, K227E and K227D had reduced and K227R lost DNA-binding ability. Comparison of the biochemical properties of the corresponding substitutions among EBV DNase and type II restriction enzymes indicated that the D…EXK motif is most likely the putative catalytic centre of EBV DNase.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.18739-0
2003-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/3/vir840677.html?itemId=/content/journal/jgv/10.1099/vir.0.18739-0&mimeType=html&fmt=ahah

References

  1. Aravind L., Koonin E. V. 1998; A novel family of predicted phosphoesterases includes Drosophila prune protein and bacterial Rec J exonuclease. Trends Biochem Sci 23:17–19
    [Google Scholar]
  2. Aravind L., Makarova K. S., Koonin E. V. 2000; SURVEY AND SUMMARY: Holliday junction resolvases and related nucleases: identification of new families, phyletic distribution and evolutionary trajectories. Nucleic Acids Res 28:3417–3432
    [Google Scholar]
  3. Ban C., Yang W. 1998; Structural basis for Mut H activation in E. coli mismatch repair and relationship of Mut H to restriction endonucleases. EMBO J 17:1526–1534
    [Google Scholar]
  4. Baylis S. A., Purifoy D. J., Littler E. 1989; The characterization of the EBV alkaline deoxyribonuclease cloned and expressed in E. coli . Nucleic Acids Res 17:7609–7622
    [Google Scholar]
  5. Baylis S. A., Purifoy D. J., Littler E. 1991; High-level expression of the Epstein–Barr virus alkaline deoxyribonuclease using a recombinant baculovirus: application to the diagnosis of nasopharyngeal carcinoma. Virology 181:390–394
    [Google Scholar]
  6. Bernad A., Blanco L., Lazaro J. M., Martin G., Salas M. 1989; A conserved 3′→5′ exonuclease active site in prokaryotic and eukaryotic DNA polymerase. Cell 59:219–228
    [Google Scholar]
  7. Bronstein J. C., Weber P. C. 1996; Purification and characterization of herpes simplex virus type 1 alkaline exonuclease expressed in Escherichia coli . J Virol 70:2008–2013
    [Google Scholar]
  8. Chen J.-Y., Liu M.-Y., Lynn T.-C., Yang C.-S. 1982; Antibody to Epstein–Barr virus-specific DNase in patients with nasopharyngeal carcinoma. Chin J Microbiology and Immunology 15:255–261
    [Google Scholar]
  9. Chen M.-R., Hsu T.-Y., Chen J.-Y., Yang C.-S. 1990; Molecular characterization of a cDNA clone encoding the Epstein–Barr virus (EBV) DNase. J Virol Methods 29:127–142
    [Google Scholar]
  10. Chen J.-Y., Liu M.-Y., Hsu T.-Y., Cho S.-M., Yang C.-S. 1993; Use of bacterially-expressed antigen for detection of antibodies to the EBV-specific deoxyribonuclease in sera from patients with nasopharyngeal carcinoma. J Virol Methods 45:49–66
    [Google Scholar]
  11. Cheng Y.-C., Chen J.-Y., Hoffmann P. J., Glaser R. 1980; Studies on the activity of DNase associated with the replication of the Epstein–Barr virus. Virology 100:334–338
    [Google Scholar]
  12. Cheng X., Balendiran K., Schildkraut I., Anderson J. E. 1994; Structure of Pvu II endonuclease with cognate DNA. EMBO J 13:3927–3935
    [Google Scholar]
  13. Clough W. 1979; Deoxyribonuclease activity found in Epstein–Barr virus producing lymphoblastoid cells. Biochemistry 18:4517–4521
    [Google Scholar]
  14. Clough W. 1980; An endonuclease isolated from Epstein–Barr virus-producing human lymphoblastoid cells. Proc Natl Acad Sci U S A 77:6194–6198
    [Google Scholar]
  15. Daibata M., Sairenji T. 1993; Epstein–Barr virus (EBV) replication and expression of EA-D (BMRF1 gene product), virus-specific deoxyribonuclease, and DNA polymerase in EBV-activated Akata cells. Virology 196:900–904
    [Google Scholar]
  16. Dorner L. F., Schildkraut I. 1994; Direct selection of binding proficient/catalytic deficient variants of Bam HI endonuclease. Nucleic Acids Res 22:1068–1074
    [Google Scholar]
  17. Gao M., Robertson B. J., McCann P. J., O'Boyle D. R., Weller S. K., Newcomb W. W., Brown J. C., Weinheimer S. P. 1998; Functional conservations of the alkaline nuclease of herpes simplex type 1 and human cytomegalovirus. Virology 249:460–470
    [Google Scholar]
  18. Goldstein J. N., Weller S. K. 1998; The exonuclease activity of HSV-1 UL12 is required for in vivo function. Virology 244:442–457
    [Google Scholar]
  19. Grabowski G., Jeltsch A., Wolfes H., Maass G., Alves J. 1995; Site-directed mutagenesis in the catalytic center of the restriction endonuclease Eco RI. Gene 157:113–118
    [Google Scholar]
  20. Hoffmann P. J. 1981; Mechanism of degradation of duplex DNA by the DNase induced by herpes simplex virus. J Virol 38:1005–1014
    [Google Scholar]
  21. Hoffmann P. J., Cheng Y.-C. 1979; DNase induced after infection of KB cells by herpes simplex virus type 1 or type 2. J Virol 32:449–457
    [Google Scholar]
  22. Huai Q., Colandene J. D., Chen Y., Luo F., Zhao Y., Topal M. D., Ke H. 2000; Crystal structure of Nae I – an evolutionary bridge between DNA endonuclease and topoisomerase. EMBO J 19:3110–3118
    [Google Scholar]
  23. Kehm E., Göksu M.-A., Bayer S., Knopf C. W. 1998; Herpes simplex virus type 1 DNase: functional analysis of the enzyme expressed by recombinant baculovirus. Intervirology 41:110–119
    [Google Scholar]
  24. Kim Y., Grable J. C., Love R., Greene P. J., Rosenberg J. M. 1990; Refinement of Eco RI endonuclease crystal structure: a revised protein chain tracing. Science 249:1307–1309
    [Google Scholar]
  25. Kovall R., Matthews B. W. 1997; Toroidal structure of lambda-exonuclease. Science 277:1824–1827
    [Google Scholar]
  26. Kovall R. A., Matthews B. W. 1998; Structure, functional, and evolutionary relationship between λ-exonuclease and the type II restriction endonucleases. Proc Natl Acad Sci U S A 95:7893–7897
    [Google Scholar]
  27. Kovall R. A., Matthews B. W. 1999; Type II restriction endonucleases: structural, functional and evolutionary relationships. Curr Opin Chem Biol 3:578–583
    [Google Scholar]
  28. Lagunavicius A., Siksnys V. 1997; Site-directed mutagenesis of putative active site residues of Mun I restriction endonuclease: replacement of catalytically essential carboxylate residues triggers DNA binding specificity. Biochemistry 36:11086–11092
    [Google Scholar]
  29. Lin S.-F., Lin S.-W., Hsu T.-Y., Liu M.-Y., Chen J.-Y., Yang C.-S. 1994; Functional analysis of the amino terminus of Epstein–Barr virus deoxyribonuclease. Virology 199:223–227
    [Google Scholar]
  30. Lin S.-F., Hsu T.-Y., Liu M.-Y., Lin L.-S., Yang H.-L., Chen J.-Y., Yang C.-S. 1995; Characterization of Epstein–Barr virus DNase and its interaction with the major DNA binding protein. Virology 208:712–722
    [Google Scholar]
  31. Liu M.-T., Hsu T.-Y., Lin S.-F., Seow S.-V., Liu M.-Y., Chen J.-Y., Yang C.-S. 1998; Distinct regions of EBV DNase are required for nuclease and DNA binding activities. Virology 242:6–13
    [Google Scholar]
  32. Martinez R., Sarisky R. T., Weber P. C., Weller S. K. 1996; Herpes simplex virus type 1 alkaline nuclease is required for efficient processing of viral DNA replication intermediates. J Virol 70:2075–2085
    [Google Scholar]
  33. Morgenstern B. 1999; Dialign 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics 15:211–218
    [Google Scholar]
  34. Morrison A., Bell J. B., Kunkel T. A., Sugino A. 1991; Eukaryotic DNA polymerase amino acid required for 3′→5′ exonuclease activity. Proc Natl Acad Sci U S A 88:9473–9477
    [Google Scholar]
  35. Morrison L. M., Keir H. M. 1968; A new DNA exonuclease in cells infected with herpes virus: partial purification and properties of the enzyme. J Gen Virol 3:337–347
    [Google Scholar]
  36. Moser M. J., Holley W. R., Chatterjee A., Mian I. S. 1997; The proofreading domain of Escherichia coli DNA polymerase I and other DNA and/or RNA exonuclease domains. Nucleic Acids Res 25:5110–5118
    [Google Scholar]
  37. Mueser T. C., Nossal N. G., Hyde C. C. 1996; Structure of bacteriophage T4 RNase H, a 5′ to 3′ RNA–DNA and DNA–DNA exonuclease with sequence similarity to the RAD2 family of eukaryotic proteins. Cell 85:1101–1112
    [Google Scholar]
  38. Nastri H. G., Evans P. D., Walker I. H., Riggs P. D. 1997; Catalytic and DNA binding properties of Pvu II restriction endonuclease mutants. J Biol Chem 272:25761–25767
    [Google Scholar]
  39. Newman M., Strzelecka T., Dorner L. F., Schildkraut I., Aggarwal A. A. 1994; Structure of restriction endonuclease Bam HI and its relationship to Eco RI. Nature 368:660–664
    [Google Scholar]
  40. Pingoud A., Jeltsch A. 1997; Recognition and cleavage of DNA by type-II restriction endonucleases. Eur J Biochem 246:1–22
    [Google Scholar]
  41. Selent U., Ruter T., Kohler E. 7 other authors 1992; A site-directed mutagenesis study to identify amino acid residues involved in the catalytic function of the restriction endonuclease Eco RV. Biochemistry 31:4808–4815
    [Google Scholar]
  42. Shao L., Rapp L. M., Weller S. K. 1993; Herpes simplex virus 1 alkaline nuclease is required for efficient egress of capsids from the nucleus. Virology 196:146–162
    [Google Scholar]
  43. Sheaffer A. K., Weinheimer S. P., Tenney D. J. 1997; The human cytomegalovirus UL98 gene encodes the conserved herpesvirus alkaline nuclease. J Gen Virol 78:2953–2961
    [Google Scholar]
  44. Shen B., Nolan J. P., Sklar L. A., Park M. S. 1997; Functional analysis of point mutations in human flap endonuclease-1 active site. Nucleic Acids Res 25:3332–3338
    [Google Scholar]
  45. Shen B., Qiu J., Hosfield D., Tainer J. 1998; A flap endonuclease homologs in archaebacteria exist as independent proteins. Trends Biochem Sci 23:171–173
    [Google Scholar]
  46. Stolzenberg M. C., Ooka T. 1990; Purification and properties of Epstein–Barr virus DNase expressed in Escherichia coli . J Virol 64:96–104
    [Google Scholar]
  47. Tsai C.-H., Liu M.-T., Chen M.-R., Lu J., Yang H.-L., Chen J.-Y., Yang C.-S. 1997; Characterization of monoclonal antibodies to the Zta and DNase proteins of Epstein–Barr virus. J Biomed Sci 4:69–77
    [Google Scholar]
  48. Winkler F. K., Banner D. W., Oefner C., Tsernoglou D., Brown R. S., Heathman S. P., Bryan R. K., Martin P. D., Petratos K., Wilson K. S. 1993; The crystal structure of Eco RV endonuclease and of its complexes with cognate and non-cognate DNA. EMBO J 12:1781–1795
    [Google Scholar]
  49. Zeng Y., Middeldorp J., Madjar J. J., Ooka T. 1997; A major DNA binding protein encoded by BALF2 open reading frame of Epstein–Barr virus (EBV) forms a complex with other EBV DNA-binding proteins: DNAase, EA-D, and DNA polymerase. Virology 239:285–295
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.18739-0
Loading
/content/journal/jgv/10.1099/vir.0.18739-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error