1887

Abstract

Adenovirus type 11 (Ad11), a member of the human adenovirus species B (HAdV-B), has a tropism for the urinary tract. The genome of Ad11 was found to comprise 34 794 bp and is 1141 bp shorter than the Ad5 genome of species HAdV-C. The G+C content of the Ad11 genome is 48·9 %, whereas that of Ad5 is 55·2 %. Ad11 and Ad5 share 57 % nucleotide identity and possess the same four early regions, but the E3 region of Ad11 could not be divided into E3A and E3B. The late genes of Ad11 and Ad5 are organized into six and five regions, respectively. Thirty-eight putative ORFs were identified in the Ad11 genome. The ORFs in the late regions, the E2B region and IVa2 show high amino acid identity between Ad11 and Ad5, whereas the ORFs in E1, E2A, E3 and E4, protein IX and the fibre protein show low amino acid identity. The highest and lowest identities were noted in the pre-terminal protein and fibre proteins: 85 % and 24·6 %, respectively. The E3 20·3K and 20·6K ORFs and the L6 agnoprotein were present in the Ad11 genome only, whereas the E3 11·6K cell death protein was identified only in Ad5. All ORFs but the E3 10·3K and L4 pVIII protein vary not only in composition but also in size. Ad11 may have a higher vector capacity than Ad5, since it has a shorter genome and a shorter fibre. Furthermore, in the E3 region, two additional ORFs can be deleted to give extra capacity for foreign DNA.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19178-0
2003-08-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/84/8/vir842061.html?itemId=/content/journal/jgv/10.1099/vir.0.19178-0&mimeType=html&fmt=ahah

References

  1. Bergelson J. M., Cunningham J. A., Droguett G., Kurt-Jones E. A., Krithivas A., Hong J. S., Horwitz M. S., Crowell R. L., Finberg R. W. 1997; Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275:1320–1323
    [Google Scholar]
  2. Caillet-Boudin M. L. 1989; Complementary peptide sequences in partner proteins of the adenovirus capsid. J Mol Biol 208:195–198
    [Google Scholar]
  3. Chen M., Mermod N., Horwitz M. S. 1990; Protein–protein interactions between adenovirus DNA polymerase and nuclear factor I mediate formation of the DNA replication preinitiation complex. J Biol Chem 265:18634–18642
    [Google Scholar]
  4. Chroboczek J., Bieber F., Jacrot B. 1992; The sequence of the genome of adenovirus type 5 and its comparison with the genome of adenovirus type 2. Virology 186:280–285
    [Google Scholar]
  5. Cuillel M., Milleville M., D'Halluin J. C. 1987; Expression of protein IIIa of human adenovirus type 2 in Escherichia coli . Gene 55:295–301
    [Google Scholar]
  6. D'Ambrosio E., Del Grosso N., Chicca A., Midulla M. 1982; Neutralizing antibodies against 33 human adenoviruses in normal children in Rome. J Hyg 89:155–161
    [Google Scholar]
  7. Davis N. A., Majee S. S., Kahn J. D. 1999; TATA box DNA deformation with and without the TATA box-binding protein. J Mol Biol 291:249–265
    [Google Scholar]
  8. Flomenberg P. R., Chen M., Horwitz M. S. 1988; Sequence and genetic organization of adenovirus type 35 early region 3. J Virol 62:4431–4437
    [Google Scholar]
  9. Ghadge G. D., Malhotra P., Furtado M. R., Dhar R., Thimmapaya B. 1994; In vitro analysis of virus-associated RNA I (VAI RNA): inhibition of the double-stranded RNA-activated protein kinase PKR by VAI RNA mutants correlates with the in vivo phenotype and the structural integrity of the central domain. J Virol 68:4137–4151
    [Google Scholar]
  10. Ghosh-Choudhury G., Haj-Ahmad Y., Graham F. L. 1987; Protein IX, a minor component of the human adenovirus capsid, is essential for the packaging of full length genomes. EMBO J 6:1733–1739
    [Google Scholar]
  11. Graham F. L., Prevec L. 1992; Adenovirus-based expression vectors and recombinant vaccines. Biotechnology 20:363–390
    [Google Scholar]
  12. Green M. 1970; Oncogenic viruses. Annu Rev Biochem 39:701–756
    [Google Scholar]
  13. Green M., Mackey J. K., Wold W. S., Rigden P. 1979; Thirty-one human adenovirus serotypes (Ad1–Ad31) form five groups (A–E) based upon DNA genome homologies. Virology 93:481–492
    [Google Scholar]
  14. Hasson T. B., Soloway P. D., Ornelles D. A., Doerfler W., Shenk T. 1989; Adenovirus L1 52- and 55-kilodalton proteins are required for assembly of virions. J Virol 63:3612–3621
    [Google Scholar]
  15. Hong J. S., Mullis K. G., Engler J. A. 1988; Characterization of the early region 3 and fiber genes of Ad7. Virology 167:545–553
    [Google Scholar]
  16. Hu S. L., Manley J. L. 1981; DNA sequence required for initiation of transcription in vitro from the major late promoter of adenovirus 2. Proc Natl Acad Sci U S A 78:820–824
    [Google Scholar]
  17. Kauffman R. S., Ginsberg H. S. 1976; Characterization of a temperature-sensitive, hexon transport mutant of type 5 adenovirus. J Virol 19:643–658
    [Google Scholar]
  18. Kidd A. H., Garwicz D., Oberg M. 1995; Human and simian adenoviruses: phylogenetic inferences from analysis of VA RNA genes. Virology 207:32–45
    [Google Scholar]
  19. Komoriya A., Green L. J., Mervic M., Yamada S. S., Yamada K. M., Humphries M. J. 1991; The minimal essential sequence for a major cell type-specific adhesion site (CS1) within the alternatively spliced type III connecting segment domain of fibronectin is leucine–aspartic acid–valine. J Biol Chem 266:15075–15079
    [Google Scholar]
  20. Lutz P., Kedinger C. 1996; Properties of the adenovirus IVa2 gene product, an effector of late-phase-dependent activation of the major late promoter. J Virol 70:1396–1405
    [Google Scholar]
  21. Mei Y. F., Wadell G. 1992; The nucleotide sequence of adenovirus type 11 early 3 region: comparison of genome type Ad11p and Ad11a. Virology 191:125–133
    [Google Scholar]
  22. Mei Y. F., Wadell G. 1993; Hemagglutination properties and nucleotide sequence analysis of the fiber gene of adenovirus genome types 11p and 11a. Virology 194:453–462
    [Google Scholar]
  23. Mei Y. F., Wadell G. 1996; Epitopes and hemagglutination binding domain on subgenus B: 2 adenovirus fibers. J Virol 70:3688–3697
    [Google Scholar]
  24. Mei Y. F., Lindman K., Wadell G. 2002; Human adenoviruses of subgenera B, C, and E with various tropisms differ in both binding to and replication in the epithelial A549 and 293 cells. Virology 295:30–43
    [Google Scholar]
  25. Morin N., Delsert C., Klessig D. F. 1989; Mutations that affect phosphorylation of the adenovirus DNA-binding protein alter its ability to enhance its own synthesis. J Virol 63:5228–5237
    [Google Scholar]
  26. Oosterom-Dragon E. A., Ginsberg H. S. 1981; Characterization of two temperature-sensitive mutants of type 5 adenovirus with mutations in the 100,000-dalton protein gene. J Virol 40:491–500
    [Google Scholar]
  27. Ostapchuk P., Hearing P. 2001; Pseudopackaging of adenovirus type 5 genomes into capsids containing the hexon proteins of adenovirus serotypes B, D, or E. J Virol 75:45–51
    [Google Scholar]
  28. Roberts R. J., O'Neill K. E., Yen C. T. 1984; DNA sequences from the adenovirus 2 genome. J Biol Chem 259:13968–13975
    [Google Scholar]
  29. Roelvink P. W., Mi Lee G., Einfeld D. A., Kovesdi I., Wickham T. J. 1999; Identification of a conserved receptor-binding site on the fiber proteins of CAR-recognizing adenoviridae. Science 286:1568–1571
    [Google Scholar]
  30. Rosa-Calatrava M., Grave L., Puvion-Dutilleul F., Chatton B., Kedinger C. 2001; Functional analysis of adenovirus protein IX identifies domains involved in capsid stability, transcriptional activity, and nuclear reorganization. J Virol 75:7131–7141
    [Google Scholar]
  31. Rux J. J., Burnett R. M. 2000; Type-specific epitope locations revealed by X-ray crystallographic study of adenovirus type 5 hexon. Mol Ther 1:18–30
    [Google Scholar]
  32. Schmid S. I., Hearing P. 1998; Cellular components interact with adenovirus type 5 minimal DNA packaging domains. J Virol 72:6339–6347
    [Google Scholar]
  33. Segerman A., Mei Y. F., Wadell G. 2000; Adenovirus types 11p and 35p show high binding efficiencies for committed hematopoietic cell lines and are infective to these cell lines. J Virol 74:1457–1467
    [Google Scholar]
  34. Shinagawa M., Matsuda A., Ishiyama T., Goto H., Sato G. 1983; A rapid and simple method for preparation of adenovirus DNA from infected cells. Microbiol Immunol 27:817–822
    [Google Scholar]
  35. Skog J., Mei Y. F., Wadell G. 2002; Human adenovirus serotypes 4p and 11p are efficiently expressed in cell lines of neural tumour origin. J Gen Virol 83:1299–1309
    [Google Scholar]
  36. Tollefson A. E., Ryerse J. S., Scaria A., Hermiston T. W., Wold W. S. 1996; The E3-11·6-kDa adenovirus death protein (ADP) is required for efficient cell death: characterization of cells infected with adp mutants. Virology 220:152–162
    [Google Scholar]
  37. Tomko R. P., Xu R., Philipson L. 1997; HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc Natl Acad Sci U S A 94:3352–3356
    [Google Scholar]
  38. Tribouley C., Lutz P., Staub A., Kedinger C. 1994; The product of the adenovirus intermediate gene IVa2 is a transcriptional activator of the major late promoter. J Virol 68:4450–4457
    [Google Scholar]
  39. Vance V., Vaucheret H. 2001; RNA silencing in plants – defense and counterdefense. Science 292:2277–2280
    [Google Scholar]
  40. Wadell G. 1984; Molecular epidemiology of human adenoviruses. Curr Top Microbiol Immunol 110:191–220
    [Google Scholar]
  41. Wadell G., Hammarskjold M. L., Winberg G., Varsanyi T. M., Sundell G. 1980; Genetic variability of adenoviruses. Ann N Y Acad Sci 354:16–42
    [Google Scholar]
  42. Walters R. W., Freimuth P., Moninger T. O., Ganske I., Zabner J., Welsh M. J. 2002; Adenovirus fiber disrupts CAR-mediated intercellular adhesion allowing virus escape. Cell 110:789–799
    [Google Scholar]
  43. Whyte P., Buchkovich K. J., Horowitz J. M., Friend S. H., Raybuck M., Weinberg R. A., Harlow E. 1988; Association between an oncogene and an anti-oncogene: the adenovirus E1A proteins bind to the retinoblastoma gene product. Nature 334:124–129
    [Google Scholar]
  44. Wickham T. J., Mathias P., Cheresh D. A., Nemerow G. R. 1993; Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 73:309–319
    [Google Scholar]
  45. Zhang L. Q., Mei Y. F., Wadell G. 2003; Human adenovirus serotypes 4 and 11 show higher binding affinity and infectivity for endothelial and carcinoma cell lines than serotype 5. J Gen Virol 84:687–695
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19178-0
Loading
/content/journal/jgv/10.1099/vir.0.19178-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error