1887

Abstract

This review summarizes the combined insights from recent structural and functional studies of viral RNA-dependent RNA polymerases (RdRPs) with the primary focus on the mechanisms of initiation of RNA synthesis. Replication of RNA viruses has traditionally been approached using a combination of biochemical and genetic methods. Recently, high-resolution structures of six viral RdRPs have been determined. For three RdRPs, enzyme complexes with metal ions, single-stranded RNA and/or nucleoside triphosphates have also been solved. These advances have expanded our understanding of the molecular mechanisms of viral RNA synthesis and facilitated further RdRP studies by informed site-directed mutagenesis. What transpires is that the basic polymerase right hand shape provides the correct geometrical arrangement of substrate molecules and metal ions at the active site for the nucleotidyl transfer catalysis, while distinct structural elements have evolved in the different systems to ensure efficient initiation of RNA synthesis. These elements feed the template, NTPs and ions into the catalytic cavity, correctly position the template 3′ terminus, transfer the products out of the catalytic site and orchestrate the transition from initiation to elongation.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.19731-0
2004-05-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/5/vir851077.html?itemId=/content/journal/jgv/10.1099/vir.0.19731-0&mimeType=html&fmt=ahah

References

  1. Ackerman S., Bunick D., Zandomeni R., Weinmann R. 1983; RNA polymerase II ternary transcription complexes generated in vitro . Nucleic Acids Res 11:6041–6064
    [Google Scholar]
  2. Ackermann M., Padmanabhan R. 2001; De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem 276:39926–39937
    [Google Scholar]
  3. Adkins S., Siegel R. W., Sun J. H., Kao C. 1997; Minimal templates directing accurate initiation of subgenomic RNA synthesis in vitro by the brome mosaic virus RNA-dependent RNA polymerase. RNA 3:634–647
    [Google Scholar]
  4. Ago H., Adachi T., Yoshida A., Yamamoto M., Habuka N., Yatsunami K., Miyano M. 1999; Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Structure Fold Des 7:1417–1426
    [Google Scholar]
  5. Alaoui-Ismaili M. H., Hamel M., L'Heureux L., Nicolas O., Bilimoria D., Labonte P., Mounir S., Rando R. F. 2000; The hepatitis C virus NS5B RNA-dependent RNA polymerase activity and susceptibility to inhibitors is modulated by metal cations. J Hum Virol 3:306–316
    [Google Scholar]
  6. Arnold J. J., Cameron C. E. 1999; Poliovirus RNA-dependent RNA polymerase (3Dpol) is sufficient for template switching in vitro . J Biol Chem 274:2706–2716
    [Google Scholar]
  7. Arnold J. J., Cameron C. E. 2000; Poliovirus RNA-dependent RNA polymerase (3Dpol). Assembly of stable, elongation-competent complexes by using a symmetrical primer/template substrate (sym/sub). J Biol Chem 275:5329–5336
    [Google Scholar]
  8. Arnold J. J., Ghosh S. K., Cameron C. E. 1999; Poliovirus RNA-dependent RNA polymerase (3Dpol). Divalent cation modulation of primer, template, and nucleotide selection. J Biol Chem 274:37060–37069
    [Google Scholar]
  9. Avota E., Berzins V., Grens E., Vishnevsky Y., Luce R., Biebricher C. K. 1998; The natural 6S RNA found in Q β -infected cells is derived from host and phage RNA. J Mol Biol 276:7–17
    [Google Scholar]
  10. Bamford D. H. 2003; Do viruses form lineages across different domains of life?. Res Microbiol 154:231–236
    [Google Scholar]
  11. Bamford D. H., Burnett R. M., Stuart D. I. 2002; Evolution of viral structure. Theor Popul Biol 61:461–470
    [Google Scholar]
  12. Behrens S. E., Tomei L., De Francesco R. 1996; Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J 15:12–22
    [Google Scholar]
  13. Blumenthal T. 1980; Q β replicase template specificity: different templates require different GTP concentrations for initiation. Proc Natl Acad Sci U S A 77:2601–2605
    [Google Scholar]
  14. Blumenthal T., Carmichael G. G. 1979; RNA replication: function and structure of Qbeta-replicase. Annu Rev Biochem 48:525–548
    [Google Scholar]
  15. Bressanelli S., Tomei L., Roussel A., Incitti I., Vitale R. L., Mathieu M., De Francesco R., Rey F. A. 1999; Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Proc Natl Acad Sci U S A 96:13034–13039
    [Google Scholar]
  16. Bressanelli S., Tomei L., Rey F. A., DeFrancesco R. 2002; Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J Virol 76:3482–3492
    [Google Scholar]
  17. Brown D., Gold L. 1996; RNA replication by Q beta replicase: a working model. Proc Natl Acad Sci U S A 93:11558–11562
    [Google Scholar]
  18. Bruenn J. A. 2003; A structural and primary sequence comparison of the viral RNA-dependent RNA polymerases. Nucleic Acids Res 31:1821–1829
    [Google Scholar]
  19. Buck K. W. 1996; Comparison of the replication of positive-stranded RNA viruses of plants and animals. Adv Virus Res 47:159–251
    [Google Scholar]
  20. Butcher S. J., Grimes J. M., Makeyev E. V., Bamford D. H., Stuart D. I. 2001; A mechanism for initiating RNA-dependent RNA polymerization. Nature 410:235–240
    [Google Scholar]
  21. Carpousis A. J., Gralla J. D. 1980; Cycling of ribonucleic acid polymerase to produce oligonucleotides during initiation in vitro at the lac UV5 promoter. Biochemistry 19:3245–3253
    [Google Scholar]
  22. Cheetham G. M., Steitz T. A. 2000; Insights into transcription: structure and function of single-subunit DNA-dependent RNA polymerases. Curr Opin Struct Biol 10:117–123
    [Google Scholar]
  23. Chen D., Patton J. T. 2000; De novo synthesis of minus-strand RNA by the rotavirus RNA polymerase in a cell-free system involves a novel mechanism of initiation. RNA 6:1455–1467
    [Google Scholar]
  24. Chen M.-H., Roossinck M., Kao C. 2000; Efficient and specific initiation of subgenomic RNA synthesis by the cucumber mosaic virus replicase in vitro requires an upstream RNA stem–loop. J Virol 74:11201–11209
    [Google Scholar]
  25. Crotty S., Gohara D., Gilligan D. K., Karelsky S., Cameron C. E., Andino R. 2003; Manganese-dependent polioviruses caused by mutations within the viral polymerase. J Virol 76:5378–5388
    [Google Scholar]
  26. Deiman B. A. L. M., Koenen A. K., Verlann P. W. G., Pleij P. W. G. 1998; Minimal template requirement for initiation of minus-strand synthesis in vitro by the RNA-dependent RNA polymerase of turnip yellow mosaic virus. J Virol 72:3965–3972
    [Google Scholar]
  27. Deiman B. A., Verlaan P. W., Pleij C. W. 2000; In vitro transcription by the turnip yellow mosaic virus RNA polymerase: a comparison with the alfalfa mosaic virus and brome mosaic virus replicases. J Virol 74:264–271
    [Google Scholar]
  28. Doublie S., Tabor S., Long A. M., Richardson C. C., Ellenberger T. 1998; Crystal structure of a bacteriophage T7 DNA replication complex at 2·2 Å resolution. Nature 391:251–258
    [Google Scholar]
  29. Doublie S., Sawaya M. R., Ellenberger T. 1999; An open and closed case for all polymerases. Structure Fold Des 7:R31–R35
    [Google Scholar]
  30. Downing K. M., Jurmark B. S., So A. G. 1971; Determination of nucleotide sequences at promoter regions by use of dinucleotides. Biochemistry 10:4970–4975
    [Google Scholar]
  31. Emerson S. U. 1982; Reconstitution studies detect a single polymerase entry site on the vesicular stomatitis virus genome. Cell 31:635–642
    [Google Scholar]
  32. Emori Y., Iba H., Okada Y. 1983; Transcriptional regulation of three double-stranded RNA segments of bacteriophage π 6 in vitro. J Virol 46:196–203
    [Google Scholar]
  33. Fechter P., Rudinger-Thirion J., Florentz C., Giege R. 2001; Novel features in the tRNA-like world of plant viral RNAs. Cell Mol Life Sci 58:1547–1561
    [Google Scholar]
  34. Fields B. N., Knipe D. M., Howley P. M., Chanock R. M., Melnick J. L., Monath T. P., Roizman B. 1996; Multiplication of viruses. In Fields Virology , 3rd edn. pp  87–94 Edited by Fields B. N., Knipe D. M., Howley P. M. Philadelphia: Lippincott–Raven;
    [Google Scholar]
  35. Frilander M., Poranen M., Bamford D. H. 1995; The large genome segment of dsRNA bacteriophage π 6 is the key regulator in the in vitro minus and plus strand synthesis. RNA 1:510–518
    [Google Scholar]
  36. Gaal T., Bartlett M. S., Ross W., Turnbough C. L., Gourse R. L. 1997; Transcription regulation by initiating NTP concentration: rRNA synthesis in bacteria. Science 278:2092–2097
    [Google Scholar]
  37. Garcin D., Kolakofsky D. 1990; A novel mechanism for the initiation of Tacaribe arenavirus genome replication. J Virol 64:6196–6203
    [Google Scholar]
  38. Garcin D., Kolakofsky D. 1992; Tacaribe arenavirus RNA synthesis in vitro is primer-dependent and suggests a novel mechanism for the initiation of genome replication. J Virol 66:1370–1376
    [Google Scholar]
  39. Garcin D., Lezzi M., Dobbs M., Elliot R. M., Schmaljohn C., Kang C. Y., Kolakofsky D. 1995; The 5′ end of Hantaan virus ( Bunyaviridae ) RNAs suggests a prime-and-realign mechanism for the initiation of RNA synthesis. J Virol 69:5754–5762
    [Google Scholar]
  40. Gnatt A. L., Cramer P., Fu J., Bushnell D. A., Kornberg R. D. 2001; Structural basis of transcription: an RNA polymerase II elongation complex at 3·3 Å resolution. Science 292:1876–1882
    [Google Scholar]
  41. Goldbach R., LeGall O., Wellink J. 1991; Alpha-like viruses in plants. Semin Virol 2:19–25
    [Google Scholar]
  42. Gong Y., Shannon A., Westaway E. G., Gowans E. J. 1998a; The replicative intermediate molecule of bovine viral diarrhoea virus contains multiple nascent strands. Arch Virol 143:399–404
    [Google Scholar]
  43. Gong Y., Trowbridge R., Macnaughton T. B., Westaway E. G., Shannon A. D., Gowans E. J. 1998b; Characterization of RNA synthesis during a one-step growth curve and of the replication mechanism of bovine viral diarrhoea virus. J Gen Virol 77:2729–2736
    [Google Scholar]
  44. Guyatt K. J., Westaway E. G., Khromykh A. A. 2001; Expression and purification of enzymatically active recombinant RNA-dependent RNA polymerase (NS5) of the flavivirus Kunjin. J Virol Methods 92:37–44
    [Google Scholar]
  45. Hagen M., Tiley L., Chung T. D. Y., Krystal M. 1995; The role of template–primer interactions in cleavage and initiation by the influenza virus polymerase. J Gen Virol 76:603–611
    [Google Scholar]
  46. Hansen J. L., Long A. M., Schultz S. C. 1997; Structure of the RNA-dependent RNA polymerase of poliovirus. Structure 5:1109–1122
    [Google Scholar]
  47. Hobson S. D., Rosenblum E. S., Richards O. C., Richmond K., Kirkegaard K., Schultz S. C. 2001; Oligomeric structures of poliovirus polymerase are important for function. EMBO J 20:1153–1163
    [Google Scholar]
  48. Hofmann M. A., Brian D. A. 1991; The 5′ end of coronavirus minus-strand RNAs contains a short poly(U) tract. J Virol 65:6331–6333
    [Google Scholar]
  49. Honda A., Mizumoto K., Ishihama A. 1986; RNA polymerase of influenza virus: dinucleotide-primed initiation of transcription at specific positions on viral RNA. J Biol Chem 261:5987–5991
    [Google Scholar]
  50. Hong Z., Cameron C. E., Walker M. P., Castro C., Yao N., Lau J. Y. N., Zhong W. 2001; A novel mechanism to ensure terminal initiation by hepatitis C virus NS5B polymerase. Virology 285:6–11
    [Google Scholar]
  51. Huang Y., Beaudry A., McSwiggen J., Sousa R. 1997; Determinants of ribose specificity in RNA polymerization: effects of Mn2+ and deoxynucleoside monophosphate incorporation into transcripts. Biochemistry 36:13718–13728
    [Google Scholar]
  52. Huang H., Chopra R., Verdine G. L., Harrison S. C. 1998; Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. Science 282:1669–1675
    [Google Scholar]
  53. Iyer L. M., Koonin E. V., Aravind L. 2003; Evolutionary connection between the catalytic subunits of DNA-dependent RNA polymerases and eukaryotic RNA-dependent RNA polymerases and the origin of RNA polymerases. BMC Struct Biol 3:1–23
    [Google Scholar]
  54. Jin H., Elliott R. M. 1993; Nonviral sequences at the 5′ end of Dugbe nairovirus S mRNAs. J Gen Virol 74:2293–2297
    [Google Scholar]
  55. Jorgensen S. E., Buch L. B., Nierlich D. P. 1969; Nucleoside triphosphate termini from RNA synthesized in vivo by Escherichia coli . Science 164:1067–1070
    [Google Scholar]
  56. Joyce C. M. 1997; Choosing the right sugar: how polymerases select a nucleotide substrate. Proc Natl Acad Sci U S A 94:1619–1622
    [Google Scholar]
  57. Joyce C. M., Steitz T. A. 1995; Polymerase structures and function: variations on a theme?. J Bacteriol 177:6321–6329
    [Google Scholar]
  58. Kao C., Sun J. H. 1996; Initiation of minus-strand RNA synthesis by the brome mosaic virus RNA-dependent RNA polymerase: use of oligoribonucleotide primers. J Virol 70:6826–6830
    [Google Scholar]
  59. Kao C. C., Del Vecchio A. M., Zhong W. 1999; De novo initiation of RNA synthesis by a recombinant flaviviridae RNA-dependent RNA polymerase. Virology 253:1–7
    [Google Scholar]
  60. Kao C. C., Yang X., Kline A., May Wang Q., Barket D., Heinz B. A. 2000; Template requirements for RNA synthesis by a recombinant hepatitis C virus RNA-dependent RNA polymerase. J Virol 74:11121–11128
    [Google Scholar]
  61. Kao C. C., Singh P., Ecker D. J. 2001; De novo initiation of viral RNA-dependent RNA synthesis. Virology 287:251–260
    [Google Scholar]
  62. Kiefer J. R., Mao C., Braman J. C., Beese L. S. 1998; Visualizing DNA replication in a catalytically active bacillus DNA polymerase crystal. Nature 391:304–307
    [Google Scholar]
  63. Kim M. J., Zhong W., Hong Z., Kao C. C. 2000; Template nucleotide moieties required for de novo initiation of RNA synthesis by a recombinant viral RNA-dependent RNA polymerase. J Virol 74:10312–10322
    [Google Scholar]
  64. Kim M., Kim H., Cho S.-P., Min M.-K. 2002; Template requirements for de novo RNA synthesis by hepatitis C virus nonstructural protein 5B polymerase on the viral X RNA. J Virol 76:6944–6956
    [Google Scholar]
  65. Koonin E. V. 1991; The phylogeny of RNA-dependent RNA polymerases of positive-strand RNA viruses. J Gen Virol 72:2197–2206
    [Google Scholar]
  66. Labonte P., Axelrod V., Agarwal A., Aulabaugh A., Amin A., Mak P. 2002; Modulation of hepatitis C virus RNA-dependent RNA polymerase activity by structure-based site-directed mutagenesis. J Biol Chem 277:38838–38846
    [Google Scholar]
  67. Lahser F. C., Marsh L. E., Hall T. C. 1993; Contributions of the brome mosaic virus RNA-3 3′-nontranslated region to replication and translation. J Virol 67:3295–3303
    [Google Scholar]
  68. Lai M. M. C. 1998; Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology 244:1–12
    [Google Scholar]
  69. Lai V. C. H., Kao C. C., Ferrari E., Park J., Uss A. S., Wright-Minogue J., Hong Z., Lau J. Y. N. 1999; Mutational analysis of bovine viral diarrhea virus RNA-dependent RNA polymerase. J Virol 73:10129–10136
    [Google Scholar]
  70. Laurila M. R., Makeyev E. V., Bamford D. H. 2002; Bacteriophage π 6 RNA-dependent RNA polymerase: molecular details of initiating nucleic acid synthesis without primer. J Biol Chem 277:17117–17124
    [Google Scholar]
  71. Lesburg C. A., Cable M. B., Ferrari E., Hong Z., Mannarino A. F., Weber P. C. 1999; Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat Struct Biol 6:937–943
    [Google Scholar]
  72. Leveque V. J., Johnson R. B., Parsons S., Ren J., Xie C., Zhang F., Wang Q. M. 2003; Identification of a C-terminal regulatory motif in hepatitis C virus RNA-dependent RNA polymerase: structural and biochemical analysis. J Virol 77:9020–9028
    [Google Scholar]
  73. López Vázquez A., Martín Alonso J. M., Parra F. 2001; Characterization of the RNA-dependent RNA polymerase from Rabbit hemorrhagic disease virus produced in Escherichia coli . Arch Virol 146:59–69
    [Google Scholar]
  74. Losick R., Chamberlin M. 1976 RNA Polymerase Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  75. Luo G., Hamatake R. K., Mathis D. M., Racela J., Rigat K. L., Lemm J., Colonno R. J. 2000; De novo initiation of RNA synthesis by the RNA dependent RNA polymerase (NS5B) of hepatitis C virus. J Virol 74:851–863
    [Google Scholar]
  76. Makeyev E. V., Bamford D. H. 2000a; Replicase activity of purified recombinant protein P2 of double-stranded RNA bacteriophage π 6. EMBO J 19:124–133
    [Google Scholar]
  77. Makeyev E. V., Bamford D. H. 2000b; The polymerase subunit of a dsRNA virus plays a central role in the regulation of viral RNA metabolism. EMBO J 19:6275–6284
    [Google Scholar]
  78. Makeyev E. V., Bamford D. H. 2001; Primer-independent RNA sequencing with bacteriophage π 6 RNA polymerase and chain terminators. RNA 7:774–781
    [Google Scholar]
  79. Makeyev E. V., Grimes J. M. 2004; RNA-dependent RNA polymerases of dsRNA bacteriophages. Virus Res (in press
    [Google Scholar]
  80. Martin C. T., Muller D. K., Coleman J. E. 1988; Processivity in early stages of transcription by T7 RNA polymerase. Biochemistry 27:3966–3974
    [Google Scholar]
  81. McClure W. R. 1985; Mechanism and control of transcription initiation in prokaryotes. Annu Rev Biochem 54:171–204
    [Google Scholar]
  82. McKnight K., Lemon S. M. 1998; The rhinovirus type 14 genome contains an internally located RNA structure that is required for viral replication. RNA 4:1569–1584
    [Google Scholar]
  83. Miller W. A., Koev G. 2000; Synthesis of subgenomic RNAs by positive-strand RNA viruses. Virology 273:1–8
    [Google Scholar]
  84. Mindich L. 1999; Precise packaging of the three genomic segments of the double-stranded-RNA bacteriophage π 6. Microbiol Mol Biol Rev 63:149–160
    [Google Scholar]
  85. Mindich L., Qiao X., Onodera S., Gottlieb P., Frilander M. 1994; RNA structural requirements for stability and minus-strand synthesis in the dsRNA bacteriophage π 6. Virology 202:258–263
    [Google Scholar]
  86. Murakami K. S., Darst S. A. 2003; Bacterial RNA polymerases: the whole story. Curr Opin Struct Biol 13:31–39
    [Google Scholar]
  87. Murakami K. S., Masuda S., Campbell E. A., Muzzin O., Darst S. A. 2002; Structural basis of transcription initiation: an RNA polymerase holoenzyme–DNA complex. Science 296:1285–1290
    [Google Scholar]
  88. Nagy P. D., Carpenter C. D., Simon A. E. 1997; A novel 3′-end repair mechanism in an RNA virus. Proc Natl Acad Sci U S A 94:1113–1118
    [Google Scholar]
  89. Netolitzky D. J., Schmaltz F. L., Parker M. D., Rayner G. A., Fisher G. R., Trent D. W., Bader D. E., Nagata L. P. 2000; Complete genomic RNA sequence of western equine encephalitis virus and expression of the structural genes. J Gen Virol 81:151–159
    [Google Scholar]
  90. Ng K. K. S., Cherney M. M., Vázquez A. L., Machín A., Alonso J. M. M., Parra F., James M. N. G. 2002; Crystal structures of active and inactive conformations of a caliciviral RNA-dependent RNA polymerase. J Biol Chem 277:1381–1387
    [Google Scholar]
  91. O'Farrell D., Trowbridge R., Rowlands D., Jäger J. 2003; Substrate complexes of hepatitis C virus RNA polymerase (HC-J4): structural evidence for nucleotide import and de-novo initiation. J Mol Biol 326:1025–1035
    [Google Scholar]
  92. Oh J. W., Ito T., Lai M. M. 1999; A recombinant hepatitis C virus RNA-dependent RNA polymerase capable of copying the full-length viral RNA. J Virol 73:7694–7702
    [Google Scholar]
  93. Oh J. W., Sheu G. T., Lai M. M. 2000; Template requirement and initiation site selection by hepatitis C virus polymerase on a minimal viral RNA template. J Biol Chem 275:17710–17717
    [Google Scholar]
  94. Ojala P. M., Bamford D. H. 1995; In vitro transcription of the double-stranded RNA bacteriophage π 6 is influenced by purine NTPs and calcium. Virology 207:400–408
    [Google Scholar]
  95. Okai Y. 1982; Calcium effects on free and chromatin-bound RNA polymerase II reactions. FEBS Lett 140:139–141
    [Google Scholar]
  96. Ollis D. L., Kline C., Steitz T. A. 1985; Domain of E. coli DNA polymerase I showing sequence homology to T7 DNA polymerase. Nature 313:818–819
    [Google Scholar]
  97. Osman T. A. M., Hemenway C. L., Buck K. W. 2000; Role of the 3′ tRNA-like structure in tobacco mosaic virus minus-strand RNA synthesis by the viral RNA-dependent RNA polymerase in vitro . J Virol 74:11671–11680
    [Google Scholar]
  98. Panavas T., Pogany J., Nagy P. D. 2002; Internal initiation by the cucumber necrosis virus RNA-dependent RNA polymerase is facilitated by promoter-like sequences. Virology 296:275–287
    [Google Scholar]
  99. Patton J. T., Jones M. T., Kalbach A. N., He Y.-W., Xiaobo J. 1997; Rotavirus RNA polymerase requires the core shell protein to synthesize the double-stranded RNA genome. J Virol 71:9618–9626
    [Google Scholar]
  100. Paul A., van Boom J. H., Fillippov D., Wimmer E. 1998; Protein primed RNA synthesis by purified RNA polymerase. Nature 393:280–284
    [Google Scholar]
  101. Pellerin C., Lefebvre S., Little M. J., McKercher G., Lamarre D., Kukolj G. 2002; Internal initiation sites of de novo RNA synthesis within the hepatitis C virus polypyrimidine tract. Biochem Biophys Res Commun 295:682–688
    [Google Scholar]
  102. Pelletier H., Sawaya M. R., Kumar A., Wilson S. H., Kraut J. 1994; Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science 264:1891–1903
    [Google Scholar]
  103. Pirttimaa M. J., Paatero A. O., Frilander M. J., Bamford D. H. 2002; Nonspecific nucleoside triphosphatase P4 of double-stranded RNA bacteriophage π 6 is required for single-stranded RNA packaging and transcription. J Virol 76:10122–10127
    [Google Scholar]
  104. Poch O., Sauvaget I., Delarue M., Tordo N. 1989; Identification of four conserved motifs among the RNA-dependent polymerase encoding elements. EMBO J 12:3867–3874
    [Google Scholar]
  105. Qin W., Luo H., Nomura T., Hayashi N., Yamashita T., Murakami S. 2002; Oligomeric interaction of hepatitis C virus NS5B is critical for catalytic activity of RNA-dependent RNA polymerase. J Biol Chem 277:2132–2137
    [Google Scholar]
  106. Quamme G. A., Dai L.-J., Rabkin S. 1993; Dynamics of intracellular free Mg2+ changes in a vascular smooth muscle cell line. Am J Physiol 265:H281–H288
    [Google Scholar]
  107. Ranjith-Kumar C. T., Kim Y.-C., Gutshall L., Silverman C., Khandekar S., Sarisky R. T., Kao C. C. 2002a; Mechanism of de novo initiation by the hepatitis C virus RNA-dependent RNA polymerase: role of divalent metals. J Virol 76:12513–12525
    [Google Scholar]
  108. Ranjith-Kumar C. T., Gutshall L., Kim M.-J., Sarisky R. T., Kao C. C. 2002b; Requirements for de novo initiation of RNA synthesis by recombinant flaviviral RNA-dependent RNA polymerases. J Virol 76:12526–12536
    [Google Scholar]
  109. Ranjith-Kumar C. T., Gajewski J., Gutshall L., Maley D., Sarisky R. T., Kao C. C. 2002c; Terminal nucleotidyl transferase activity of recombinant flaviviridae RNA-dependent RNA polymerases: implication for viral RNA synthesis. J Virol 75:8615–8623
    [Google Scholar]
  110. Ranjith-Kumar C. T., Zhang X., Kao C. C. 2003; Enhancer-like activity of a brome mosaic virus RNA promoter. J Virol 77:1830–1839
    [Google Scholar]
  111. Reddy P. S., Chatterji D. 1994; Evidence for a pyrimidine-nucleotide specific initiation site (the i site) on Escherichia coli RNA polymerase: proximity relationship with the inhibitor binding domain. Eur J Biochem 225:737–745
    [Google Scholar]
  112. Salas M. 1991; Protein-priming of DNA replication. Annu Rev Biochem 60:39–71
    [Google Scholar]
  113. Salgado P. S., Makeyev E. V., Butcher S., Bamford D., Stuart D. I., Grimes J. M. 2004; The structural basis for RNA specificity and Ca2+ inhibition of an RNA-dependent RNA polymerase. Structure (in press
    [Google Scholar]
  114. Sargent M. D., Borsa J. 1984; Effects of Ca2+ and Mg2+ on the switch-on of transcriptase function in reovirus in vitro. Can J Biochem Cell Biol 62:162–169
    [Google Scholar]
  115. Sawicki D., Gomatos P. J. 1976; Replication of Semliki Forest virus: polyadenylates in plus-strand RNA and polyuridylate in minus-strand RNA. J Virol 20:446–464
    [Google Scholar]
  116. Schibler U., Perry R. P. 1977; The 5′-termini of heterogeneous nuclear RNA: a comparison among molecules of different sizes and ages. Nucleic Acids Res 4:133–149
    [Google Scholar]
  117. Seal B. S., Neill J. D., Ridpath J. F. 1994; Predicted stem–loop structures and variation in nucleotide sequence of 3′ noncoding regions among animal calicivirus genomes. Virus Genes 8:243–247
    [Google Scholar]
  118. Siegel R. W., Bellon L., Beigelman L., Kao C. 1998; Moieties in an RNA promoter specifically recognized by a viral RNA-dependent RNA polymerase. Proc Natl Acad Sci U S A 95:11613–11618
    [Google Scholar]
  119. Singh R. N., Dreher T. W. 1997; Turnip yellow mosaic virus RNA-dependent RNA polymerase: initiation of minus-strand synthesis in vitro . Virology 233:430–439
    [Google Scholar]
  120. Singh R. N., Dreher T. W. 1998; Specific site selection in RNA resulting from a combination of non-specific secondary structure and -CCR- boxes: initiation of minus strand synthesis by turnip yellow mosaic virus RNA-dependent RNA polymerase. RNA 4:1083–1095
    [Google Scholar]
  121. Sit T. L., Vaewhong S., Lommel S. 1998; RNA-mediated transactivation of transcription from a viral RNA. Science 281:829–832
    [Google Scholar]
  122. Sivakumaran K., Kao C. C. 1999; Initiation of genomic positive strand synthesis from DNA and RNA templates by a viral RNA-dependent RNA polymerase. J Virol 73:6415–6423
    [Google Scholar]
  123. Steitz T. A. 1998; A mechanism for all polymerases. Nature 391:231–232
    [Google Scholar]
  124. Steitz T. A., Steitz J. A. 1993; A general two-metal-ion mechanism for catalytic RNA. Proc Natl Acad Sci U S A 90:6498–6502
    [Google Scholar]
  125. Strauss J. H., Strauss E. G. 1994; The alphaviruses: gene expression, replication and evolution. Microbiol Rev 58:491–562
    [Google Scholar]
  126. Sun J. H., Kao C. C. 1997a; RNA synthesis by the brome mosaic virus RNA-dependent RNA polymerase: transition from initiation to elongation. Virology 233:63–73
    [Google Scholar]
  127. Sun J., Kao C. C. 1997b; Characterization of RNA products associated with or aborted by a viral RNA-dependent RNA polymerase. Virology 236:348–353
    [Google Scholar]
  128. Sun J., Adkins S., Faurote G., Kao C. C. 1996; Initiation of (−)-strand RNA synthesis catalyzed by the brome mosaic virus RNA-dependent RNA polymerase: synthesis of oligonucleotides. Virology 226:1–12
    [Google Scholar]
  129. Sun X. L., Johnson R. B., Hockman M. A., Wang Q. M. 2000; De novo initiation catalyzed by HCV RNA-dependent RNA polymerase. Biochem Biophys Res Commun 268:798–803
    [Google Scholar]
  130. Tabor S., Richardson C. 1989; Effect of manganese ions on the incorporation of dideoxynucleotides by bacteriophage T7 DNA polymerase and Escherichia coli DNA polymerase I. Proc Natl Acad Sci U S A 86:4076–4080
    [Google Scholar]
  131. Tao Y., Farsetta D. L., Nibert M. L., Harrison S. C. 2002; RNA synthesis in a cage – structural studies of reovirus polymerase 83. Cell 111:733–745
    [Google Scholar]
  132. Testa D., Banerjee A. K. 1979; Initiation of RNA synthesis in vitro by vesicular stomatitis virus. Role of ATP. J Biol Chem 254:2053–2058
    [Google Scholar]
  133. Tomei L., Vitale R. L., Incitti I., Serafini S., Altamura S., Vitelli A., De Francesco R. 2000; Biochemical characterization of a hepatitis C virus RNA-dependent RNA polymerase mutant lacking the C-terminal hydrophobic sequence. J Gen Virol 81:759–767
    [Google Scholar]
  134. Van Belkum A., Abrahams J. P., Pleij C. W. A., Bosch L. 1985; Five pseudoknots at the 204 nucleotides long 3′ noncoding region of tobacco mosaic virus RNA. Nucleic Acids Res 13:7673–7686
    [Google Scholar]
  135. Van Dijk A. A., Frilander M., Bamford D. H. 1995; Differentiation between minus- and plus-strand synthesis: polymerase activity of dsRNA bacteriophage π 6 in an in vitro packaging and replication system. Virology 211:320–323
    [Google Scholar]
  136. Whelan S. P. J., Wertz G. W. 2002; Transcription and replication initiate at separate sites on the vesicular stomatitis virus genome. Proc Natl Acad Sci U S A 99:9178–9183
    [Google Scholar]
  137. Yamakawa M., Furuichi Y., Nakashima K., La Fiandra A. J., Shatkin A. J. 1981; Excess synthesis of viral mRNA 5-terminal oligonucleotides by reovirus transcriptase. J Biol Chem 256:6507–6514
    [Google Scholar]
  138. Yamashita T., Kaneko S., Shirota Y., Qin W., Nomura T., Kobayashi K., Murakami S. 1998; RNA-dependent RNA polymerase activity of the soluble recombinant hepatitis C virus NS5B protein truncated at the C terminal region. J Biol Chem 273:15479–15486
    [Google Scholar]
  139. Yang H., Makeyev E. V., Bamford D. H. 2001; Comparison of polymerase subunits from double-stranded RNA bacteriophages. J Virol 75:11088–11095
    [Google Scholar]
  140. Yang H., Makeyev E. V., Butcher S. J., Gaidelyte A., Bamford D. H. 2003a; Two distinct mechanisms ensure transcriptional polarity in double-stranded RNA bacteriophages. J Virol 77:1195–1203
    [Google Scholar]
  141. Yang H., Gottlieb P., Wei H., Bamford D. H., Makeyev E. V. 2003b; Temperature requirements for initiation of RNA-dependent RNA polymerization. Virology 314:706–715
    [Google Scholar]
  142. Yoshinari S., Dreher T. W. 2000; Internal and 3′ RNA initiation by Q β replicase directed by CCA boxes. Virology 271:363–370
    [Google Scholar]
  143. Yoshinari S., Nagy P., Simon A. E., Dreher T. W. 2000; CCA initiation boxes without unique promoter elements support in vitro transcription by three viral RNA-dependent RNA polymerases. RNA 6:698–707
    [Google Scholar]
  144. You S., Padmanabhan R. 1999; A novel in vitro replication system for Dengue virus. J Biol Chem 274:33714–33722
    [Google Scholar]
  145. Zhang R., Ellis K. 1989; In vivo measurement of total body magnesium and manganese in rats. Am J Physiol 257:R1136–R1140
    [Google Scholar]
  146. Zhong W., Gutshall L. L., Del Vecchio A. M. 1998; Identification and characterization of an RNA-dependent RNA polymerase activity within the nonstructural protein 5B region of bovine viral diarrhea virus. J Virol 72:9365–9369
    [Google Scholar]
  147. Zhong W., Uss A. S., Ferrari E., Lau J. Y., Hong Z. 2000a; De novo initiation of RNA synthesis by hepatitis C virus nonstructural protein 5B polymerase. J Virol 74:2017–2022
    [Google Scholar]
  148. Zhong W., Ferrari E., Lesburg C. A., Maag D., Gosh A. K. B., Cameron C. E., Lau J. Y. N., Hong Z. 2000b; Template–primer requirements and single-nucleotide incorporation by hepatitis C virus nonstructural protein 5B polymerase. J Virol 74:9134–9143
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.19731-0
Loading
/content/journal/jgv/10.1099/vir.0.19731-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error