1887

Abstract

The genome of (BUN; family ) consists of three segments of negative-sense, single-stranded RNA that are called L (large), M (medium) and S (small), according to their size. The genomic RNAs are encapsidated by the viral nucleocapsid protein to form ribonucleoprotein complexes (RNPs). The terminal 3′ and 5′ non-coding sequences are complementary and interact to give a panhandle-like structure to the RNP. Located within these non-coding sequences are elements that control replication and transcription. The sequences of the terminal 11 nt are conserved among the genome segments and are followed by shorter, complementary nucleotide motifs that are conserved on a segment-specific basis. Here, a detailed analysis of the 3′ and 5′ non-coding regions of the BUN S segment is presented. By using a mini-replicon system, it was shown that a functional BUN S promoter requires complementarity, as well as defined sequences, within the terminal 15 nt of either end. It was also shown that the minimal requirement for transcription is localized within the terminal 32 nt of the S segment. A comparison of known strong BUN promoters led to the prediction of a structural element outside the terminal 15 nt; introduction of this motif into the BUN S sequence resulted in increased antigenome and mRNA levels and increased expression of S segment proteins, as shown by mini-replicon assays, as well as recovery of a recombinant virus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.80407-0
2004-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/jgv/85/11/vir853269.html?itemId=/content/journal/jgv/10.1099/vir.0.80407-0&mimeType=html&fmt=ahah

References

  1. Barr J. N., Wertz G. W. 2004; Bunyamwera bunyavirus RNA synthesis requires cooperation of 3′- and 5′-terminal sequences. J Virol 78:1129–1138 [CrossRef]
    [Google Scholar]
  2. Barr J. N., Elliott R. M., Dunn E. F., Wertz G. W. 2003; Segment-specific terminal sequences of Bunyamwera bunyavirus regulate genome replication. Virology 311:326–338 [CrossRef]
    [Google Scholar]
  3. Bridgen A., Elliott R. M. 1996; Rescue of a segmented negative-strand RNA virus entirely from cloned complementary DNAs. Proc Natl Acad Sci U S A 93:15400–15404 [CrossRef]
    [Google Scholar]
  4. Bridgen A., Weber F., Fazakerley J. K., Elliott R. M. 2001; Bunyamwera bunyavirus nonstructural protein NSs is a nonessential gene product that contributes to viral pathogenesis. Proc Natl Acad Sci U S A 98:664–669 [CrossRef]
    [Google Scholar]
  5. Buchholz U. J., Finke S., Conzelmann K.-K. 1999; Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73:251–259
    [Google Scholar]
  6. Dunn E. F., Pritlove D. C., Jin H., Elliott R. M. 1995; Transcription of a recombinant bunyavirus RNA template by transiently expressed bunyavirus proteins. Virology 211:133–143 [CrossRef]
    [Google Scholar]
  7. Elliott R. M. 1989; Nucleotide sequence analysis of the small (S) RNA segment of Bunyamwera virus, the prototype of the family Bunyaviridae. J Gen Virol 70:1281–1285 [CrossRef]
    [Google Scholar]
  8. Elliott R. M. 1996; The Bunyaviridae : concluding remarks and future prospects. In The Bunyaviridae pp  295–332 Edited by Elliott R. M. New York: Plenum;
    [Google Scholar]
  9. Elliott R. M. 1997; Emerging viruses: the Bunyaviridae . Mol Med 3:572–577
    [Google Scholar]
  10. Elliott R. M., Schmaljohn C. S., Collett M. S. 1991; Bunyaviridae genome structure and gene expression. Curr Top Microbiol Immunol 169:91–141
    [Google Scholar]
  11. Elliott R. M., Bouloy M., Calisher C. H., Goldbach R., Moyer J. T., Nichol S. T., Petterson R., Plyusnin A., Schmaljohn C. S. 2000; Bunyaviridae . In Virus Taxonomy: Seventh Report of the International Committee on Taxonomy of Viruses pp  599–621 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E. B., Estes M. K., Lemon S. M., Maniloff J., Mayo M. A., McGeoch D. J., Pringle C. R., Wickner R. B. San Diego: Academic Press;
    [Google Scholar]
  12. Fuerst T. R., Niles E. G., Studier F. W., Moss B. 1986; Eukaryotic transient-expression system based on recombinant vaccinia virus that synthesizes bacteriophage T7 RNA polymerase. Proc Natl Acad Sci U S A 83:8122–8126 [CrossRef]
    [Google Scholar]
  13. Gorman C. M., Moffat L. F., Howard B. H. 1982; Recombinant genomes which express chloramphenicol acetyltransferase in mammalian cells. Mol Cell Biol 2:1044–1051
    [Google Scholar]
  14. Hsu M.-T., Parvin J. D., Gupta S., Krystal M., Palese P. 1987; Genomic RNAs of influenza viruses are held in a circular conformation in virions and in infected cells by a terminal panhandle. Proc Natl Acad Sci U S A 84:8140–8144 [CrossRef]
    [Google Scholar]
  15. Kohl A., Bridgen A., Dunn E., Barr J. N., Elliott R. M. 2003; Effects of a point mutation in the 3′ end of the S genome segment of naturally occurring and engineered Bunyamwera viruses. J Gen Virol 84:789–793 [CrossRef]
    [Google Scholar]
  16. Kohl A., Hart T. J., Noonan C., Royall E., Roberts L. O., Elliott R. M. 2004; A Bunyamwera virus minireplicon system in mosquito cells. J Virol 78:5679–5685 [CrossRef]
    [Google Scholar]
  17. Leahy M. B., Dessens J. T., Nuttall P. A. 1997; Striking conformational similarities between the transcription promoters of Thogoto and influenza A viruses: evidence for intrastrand base pairing in the 5′ promoter arm. J Virol 71:8352–8356
    [Google Scholar]
  18. Li M.-L., Ramirez B. C., Krug R. M. 1998; RNA-dependent activation of primer RNA production by influenza virus polymerase: different regions of the same protein subunit constitute the two required RNA-binding sites. EMBO J 17:5844–5852 [CrossRef]
    [Google Scholar]
  19. Martín-Benito J., Area E., Ortega J., Llorca O., Valpuesta J. M., Carrascosa J. L., Ortín J. 2001; Three-dimensional reconstruction of a recombinant influenza virus ribonucleoprotein particle. EMBO Rep 2:313–317 [CrossRef]
    [Google Scholar]
  20. Obijeski J. F., Bishop D. H. L., Palmer E. L., Murphy F. A. 1976; Segmented genome and nucleocapsid of La Crosse virus. J Virol 20:664–675
    [Google Scholar]
  21. Pardigon N., Vialat P., Girard M., Bouloy M. 1982; Panhandles and hairpin structures at the termini of Germiston virus RNAs (Bunyavirus). Virology 122:191–197 [CrossRef]
    [Google Scholar]
  22. Perez M., de la Torre J. C. 2003; Characterization of the genomic promoter of the prototypic arenavirus lymphocytic choriomeningitis virus. J Virol 77:1184–1194 [CrossRef]
    [Google Scholar]
  23. Pettersson R. F., von Bonsdorff C.-H. 1975; Ribonucleoproteins of Uukuniemi virus are circular. J Virol 15:386–392
    [Google Scholar]
  24. Prehaud C., Lopez N., Blok M. J., Obry V., Bouloy M. 1997; Analysis of the 3′ terminal sequence recognized by the Rift Valley fever virus transcription complex in its ambisense S segment. Virology 227:189–197 [CrossRef]
    [Google Scholar]
  25. Raju R., Kolakofsky D. 1989; The ends of La Crosse virus genome and antigenome RNAs within nucleocapsids are base paired. J Virol 63:122–128
    [Google Scholar]
  26. Schmaljohn C. S., Hooper J. W. 2001; Bunyaviridae : the viruses and their replication. In Fields Virology , 4th edn. pp  1581–1602 Edited by Knipe D. M., Howley P. M. Philadelphia, PA: Lippincott Williams & Wilkins;
    [Google Scholar]
  27. Watret G. E., Pringle C. R., Elliott R. M. 1985; Synthesis of bunyavirus-specific proteins in a continuous cell line (XTC-2) derived from Xenopus laevis . J Gen Virol 66:473–482 [CrossRef]
    [Google Scholar]
  28. Weber F., Dunn E. F., Bridgen A., Elliott R. M. 2001; The Bunyamwera virus nonstructural protein NSs inhibits viral RNA synthesis in a minireplicon system. Virology 281:67–74 [CrossRef]
    [Google Scholar]
  29. Weber F., Bridgen A., Fazakerley J. K., Streitenfeld H., Kessler N., Randall R. E., Elliott R. M. 2002; Bunyamwera bunyavirus nonstructural protein NSs counteracts the induction of alpha/beta interferon. J Virol 76:7949–7955 [CrossRef]
    [Google Scholar]
  30. Zuker M., Jaeger J. A., Turner D. H. 1991; A comparison of optimal and suboptimal RNA secondary structures predicted by free energy minimization with structures determined by phylogenetic comparison. Nucleic Acids Res 19:2707–2714 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.80407-0
Loading
/content/journal/jgv/10.1099/vir.0.80407-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error