1887

Abstract

Direct repeats (DRs) of 20–45 nucleotide conserved sequences (CS) and repeated CS (RCS), separated by non-conserved sequences up to 100 nucleotides long, were previously described in the 3′ untranslated region (3′UTR) of the three major mosquito-borne flavivirus (MBFV) subgroups, represented by , and . Each subgroup exhibits a specific pattern of DRs, the biological significance of which has not yet been adequately addressed. The DRs were originally identified using conventional alignment programs based on the assumption that genetic variation is driven primarily by nucleotide substitutions. Since there are no recognized alignment programs that can adequately accommodate very divergent sequences, a method has been devised to construct and analyse a substantially improved 3′UTR alignment between these highly divergent viruses, based on the concept that deletions and/or insertions, in addition to substitutions, are important drivers of 3′UTR evolution. This ‘robust alignment’ approach demonstrated more extensive homologies in the 3′UTR than had been recognized previously and revealed the presence of similar DRs, either intact or as sequence ‘remnants’, in all the MBFV subgroups. The relevance of these observations is discussed in relation to (i) the function of DRs as elements of replication enhancement, (ii) the evolution of RNA secondary structures and (iii) the significance of DRs and secondary structures in MBFV transmissibility between vertebrate and invertebrate hosts.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82235-0
2006-11-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/jgv/87/11/3297.html?itemId=/content/journal/jgv/10.1099/vir.0.82235-0&mimeType=html&fmt=ahah

References

  1. Ackermann M., Padmanabhan R. 2001; De novo synthesis of RNA by the dengue virus RNA-dependent RNA polymerase exhibits temperature dependence at the initiation but not elongation phase. J Biol Chem 276:39926–39937 [CrossRef]
    [Google Scholar]
  2. Blackwell J. L., Brinton M. A. 1995; BHK cell proteins that bind to the 3′ stem-loop structure of the West Nile virus genome RNA. J Virol 69:5650–5658
    [Google Scholar]
  3. Blackwell J. L., Brinton M. A. 1997; Translation elongation factor-1 alpha interacts with the 3′ stem-loop region of West Nile virus genomic RNA. J Virol 71:6433–6444
    [Google Scholar]
  4. Boguszewska-Chachulska A. M., Haenni A. L. 2005; RNA viruses redirect host factors to better amplify their genome. Adv Virus Res 65:29–61
    [Google Scholar]
  5. Bredenbeek P. J., Kooi E. A., Lindenbach B., Huijkman N., Rice C. M., Spaan W. J. 2003; A stable full-length yellow fever virus cDNA clone and the role of conserved RNA elements in flavivirus replication. J Gen Virol 84:1261–1268 [CrossRef]
    [Google Scholar]
  6. Brinton M. A., Fernandez A. V., Dispoto J. H. 1986; The 3′-nucleotides of flavivirus genomic RNA form a conserved secondary structure. Virology 153:113–121 [CrossRef]
    [Google Scholar]
  7. Bryan G. T., Gardner R. C., Forster R. L. 1992; Nucleotide sequence of the coat protein gene of a strain of clover yellow vein virus from New Zealand: conservation of a stem-loop structure in the 3′ region of potyviruses. Arch Virol 124:133–146 [CrossRef]
    [Google Scholar]
  8. Bryant J. E., Vasconcelos P. F., Rijnbrand R. C., Mutebi J. P., Higgs S., Barrett A. D. 2005; Size heterogeneity in the 3′ noncoding region of South American isolates of yellow fever virus. J Virol 79:3807–3821 [CrossRef]
    [Google Scholar]
  9. Charlier N., Leyssen P., Pleij C. W. A. & 7 other authors 2002; Complete genome sequence of Montana Myotis leukoencephalitis virus, phylogenetic analysis and comparative study of the 3′ untranslated region of flaviviruses with no known vector. J Gen Virol 83:1875–1885
    [Google Scholar]
  10. Charrel R. N., Zaki A. M., Attoui H. & 7 other authors 2001; Complete coding sequence of the Alkhurma virus, a tick-borne flavivirus causing severe hemorrhagic fever in humans in Saudi Arabia. Biochem Biophys Res Commun 287:455–461 [CrossRef]
    [Google Scholar]
  11. Chiu W. W., Kinney R. M., Dreher T. W. 2005; Control of translation by the 5′- and 3′-terminal regions of the dengue virus genome. J Virol 79:8303–8315 [CrossRef]
    [Google Scholar]
  12. Cook S., Holmes E. C. 2006; A multigene analysis of the phylogenetic relationships among the flaviviruses (Family: Flaviviridae) and the evolution of vector transmission. Arch Virol 151:309–325 [CrossRef]
    [Google Scholar]
  13. Copper P. D., Steiner-Pryor A., Scotti P. D., Delong D. 1974; On the nature of poliovirus genetic recombinants. J Gen Virol 23:41–49 [CrossRef]
    [Google Scholar]
  14. Corver J., Lenches E., Smith K., Robison R. A., Sando T., Strauss E. G., Strauss J. H. 2003; Fine mapping of a cis-acting sequence element in Yellow fever virus RNA that is required for RNA replication and cyclization. J Virol 77:2265–2270 [CrossRef]
    [Google Scholar]
  15. De Nova Ocampo M., Villegas Sepulveda N., del Angel R. M. 2002; Translation elongation factor-1alpha, La, and PTB interact with the 3′ untranslated region of dengue 4 virus RNA. Virology 295:337–347 [CrossRef]
    [Google Scholar]
  16. Edgil D., Diamond M. S., Holden K. L., Paranjape S. M., Harris E. 2003; Translation efficiency determines differences in cellular infection among dengue virus type 2 strains. Virology 317:275–290 [CrossRef]
    [Google Scholar]
  17. Faragher S. G., Dalgarno L. 1986; Regions of conservation and divergence in the 3′ untranslated sequences of genomic RNA from Ross River virus isolates. J Mol Biol 190:141–148 [CrossRef]
    [Google Scholar]
  18. Gould E. A., de Lamballerie X., Zanotto P. M., Holmes E. C. 2001; Evolution, epidemiology, and dispersal of flaviviruses revealed by molecular phylogenies. Adv Virus Res 57:71–103
    [Google Scholar]
  19. Gould E. A., de Lamballerie X., Zanotto P. M., Holmes E. C. 2003; Origins, evolution, and vector/host coadaptations within the genus Flavivirus. Adv Virus Res 59:277–314
    [Google Scholar]
  20. Gritsun T. S., Gould E. A. 2006a; The 3′ untranslated regions of Kamiti River virus and Cell fusing agent virus originated by self-duplication. J Gen Virol 87:2615–2619 [CrossRef]
    [Google Scholar]
  21. Gritsun T. S., Gould E. A. 2006b; The 3′ untranslated region of tick-borne flaviviruses originated by the duplication of long repeat sequences within the open reading frame. Virology 350:269–275 [CrossRef]
    [Google Scholar]
  22. Gritsun T. S., Holmes E. C., Gould E. A. 1995; Analysis of flavivirus envelope proteins reveals variable domains that reflect their antigenicity and may determine their pathogenesis. Virus Res 35:307–321 [CrossRef]
    [Google Scholar]
  23. Gritsun T. S., Desai A., Gould E. A. 2001; The degree of attenuation of tick-borne encephalitis virus depends on the cumulative effects of point mutations. J Gen Virol 82:1667–1675
    [Google Scholar]
  24. Hahn C. S., Hahn Y. S., Rice C. M., Lee E., Dalgarno L., Strauss E. G., Strauss J. H. 1987; Conserved elements in the 3′ untranslated region of flavivirus RNAs and potential cyclization sequences. J Mol Biol 198:33–41 [CrossRef]
    [Google Scholar]
  25. Hajjou M., Hill K. R., Subramaniam S. V., Hu J. Y., Raju R. 1996; Nonhomologous RNA-RNA recombination events at the 3′ nontranslated region of the Sindbis virus genome: hot spots and utilization of nonviral sequences. J Virol 70:5153–5164
    [Google Scholar]
  26. Heinz F. X., Collett M. S., Purcell R. H., Gould E. A., Howard C. R., Houghton M., Moormann R. J. M., Rice C. M., Thiel H. J. 2000; Family Flaviviridae . In Virus Taxonomy. Seventh Report of the International Committee for the Taxonomy of Viruses pp  859–878 Edited by van Regenmortel M. H. V., Fauquet C. M., Bishop D. H. L., Carstens E., Estes M. K., Lemon S., Maniloff J., Mayo M. A., McGeoch D., Pringle C. R., Wickner R. B. San Diego: Academic Press;
    [Google Scholar]
  27. Holden K. L., Harris E. 2004; Enhancement of dengue virus translation: role of the 3′ untranslated region and the terminal 3′ stem-loop domain. Virology 329:119–133 [CrossRef]
    [Google Scholar]
  28. Khromykh A. A., Westaway E. G. 1997; Subgenomic replicons of the flavivirus Kunjin: construction and applications. J Virol 71:1497–1505
    [Google Scholar]
  29. Khromykh A. A., Meka H., Guyatt K. J., Westaway E. G. 2001; Essential role of cyclization sequences in flavivirus RNA replication. J Virol 75:6719–6728 [CrossRef]
    [Google Scholar]
  30. Khromykh A. A., Kondratieva N., Sgro J. Y., Palmenberg A., Westaway E. G. 2003; Significance in replication of the terminal nucleotides of the flavivirus genome. J Virol 77:10623–10629 [CrossRef]
    [Google Scholar]
  31. Kuno G., Chang G. J., Tsuchiya K. R., Karabatsos N., Cropp C. B. 1998; Phylogeny of the genus Flavivirus. J Virol 72:73–83
    [Google Scholar]
  32. Lai M. M. 1992; RNA recombination in animal and plant viruses. Microbiol Rev 56:61–79
    [Google Scholar]
  33. Lai M. M. 1998; Cellular factors in the transcription and replication of viral RNA genomes: a parallel to DNA-dependent RNA transcription. Virology 244:1–12 [CrossRef]
    [Google Scholar]
  34. Li W., Brinton M. A. 2001; The 3′ stem loop of the West Nile virus genomic RNA can suppress translation of chimeric mRNAs. Virology 287:49–61 [CrossRef]
    [Google Scholar]
  35. Lindenbach B. D., Rice C. M. 2001; Flaviviridae : the viruses and their replication. In Fields Virology , 4th edn. pp  991–1042 Edited by Knipe D. M., Howley P. M. London, New York & Tokyo: Lippincott Williams & Wilkins;
    [Google Scholar]
  36. Lo M. K., Tilgner M., Bernard K. A., Shi P. Y. 2003; Functional analysis of mosquito-borne flavivirus conserved sequence elements within 3′ untranslated region of West Nile virus by use of a reporting replicon that differentiates between viral translation and RNA replication. J Virol 77:10004–10014 [CrossRef]
    [Google Scholar]
  37. Mackenzie J. M., Khromykh A. A., Westaway E. G. 2001; Stable expression of noncytopathic Kunjin replicons simulates both ultrastructural and biochemical characteristics observed during replication of Kunjin virus. Virology 279:161–172 [CrossRef]
    [Google Scholar]
  38. Mandl C. W., Holzmann H., Meixner T., Rauscher S., Stadler P. F., Allison S. L., Heinz F. X. 1998; Spontaneous and engineered deletions in the 3′ noncoding region of tick-borne encephalitis virus: construction of highly attenuated mutants of a flavivirus. J Virol 72:2132–2140
    [Google Scholar]
  39. Men R., Bray M., Clark D., Chanock R. M., Lai C. J. 1996; Dengue type 4 virus mutants containing deletions in the 3′ noncoding region of the RNA genome: analysis of growth restriction in cell culture and altered viremia pattern and immunogenicity in rhesus monkeys. J Virol 70:3930–3937
    [Google Scholar]
  40. Mutebi J. P., Barrett A. D. 2002; The epidemiology of yellow fever in Africa. Microbes Infect 4:1459–1468 [CrossRef]
    [Google Scholar]
  41. Mutebi J. P., Wang H., Li L., Bryant J. E., Barrett A. D. 2001; Phylogenetic and evolutionary relationships among yellow fever virus isolates in Africa. J Virol 75:6999–7008 [CrossRef]
    [Google Scholar]
  42. Mutebi J. P., Rijnbrand R. C., Wang H., Ryman K. D., Wang E., Fulop L. D., Titball R., Barrett A. D. 2004; Genetic relationships and evolution of genotypes of yellow fever virus and other members of the yellow fever virus group within the Flavivirus genus based on the 3′ noncoding region. J Virol 78:9652–9665 [CrossRef]
    [Google Scholar]
  43. Nisbet D. J., Lee K. J., van den Hurk A. F., Johansen C. A., Kuno G., Chang G. J., Mackenzie J. S., Ritchie S. A., Hall R. A. 2005; Identification of new flaviviruses in the Kokobera virus complex. J Gen Virol 86:121–124 [CrossRef]
    [Google Scholar]
  44. Olsthoorn R. C., Bol J. F. 2001; Sequence comparison and secondary structure analysis of the 3′ noncoding region of flavivirus genomes reveals multiple pseudoknots. RNA 7:1370–1377
    [Google Scholar]
  45. Peerenboom E., Jacobi V., Cartwright E. J., Adams M. J., Steinbiss H. H., Antoniw J. F. 1997; A large duplication in the 3′-untranslated region of a subpopulation of RNA2 of the UK-M isolate of barley mild mosaic bymovirus. Virus Res 47:1–6 [CrossRef]
    [Google Scholar]
  46. Pilipenko E. V., Gmyl A. P., Agol V. I. 1995; A model for rearrangements in RNA genomes. Nucleic Acids Res 23:1870–1875 [CrossRef]
    [Google Scholar]
  47. Pletnev A. G. 2001; Infectious cDNA clone of attenuated Langat tick-borne flavivirus (strain E5) and a 3′ deletion mutant constructed from it exhibits decreased neuroinvasiveness in immunodeficient mice. Virology 282:288–300 [CrossRef]
    [Google Scholar]
  48. Poidinger M., Hall R. A., Mackenzie J. S. 1996; Molecular characterization of the Japanese encephalitis serocomplex of the flavivirus genus. Virology 218:417–421 [CrossRef]
    [Google Scholar]
  49. Proutski V., Gould E. A., Holmes E. C. 1997a; Secondary structure of the 3′ untranslated region of flaviviruses: similarities and differences. Nucleic Acids Res 25:1194–1202 [CrossRef]
    [Google Scholar]
  50. Proutski V., Gaunt M. W., Gould E. A., Holmes E. C. 1997b; Secondary structure of the 3′-untranslated region of yellow fever virus: implications for virulence, attenuation and vaccine development. J Gen Virol 78:1543–1549
    [Google Scholar]
  51. Proutski V., Gritsun T. S., Gould E. A., Holmes E. C. 1999; Biological consequences of deletions within the 3′-untranslated region of flaviviruses may be due to rearrangements of RNA secondary structure. Virus Res 64:107–123 [CrossRef]
    [Google Scholar]
  52. Santagati M. G., Itaranta P. V., Koskimies P. R., Maatta J. A., Salmi A. A., Hinkkanen A. E. 1994; Multiple repeating motifs are found in the 3′-terminal non-translated region of Semliki Forest virus A7 variant genome. J Gen Virol 75:1499–1504 [CrossRef]
    [Google Scholar]
  53. Shi P. Y., Brinton M. A., Veal J. M., Zhong Y. Y., Wilson W. D. 1996; Evidence for the existence of a pseudoknot structure at the 3′ terminus of the flavivirus genomic RNA. Biochemistry 35:4222–4230 [CrossRef]
    [Google Scholar]
  54. Shi B., Ding S., Symons R. H. 1997; Two novel subgenomic RNAs derived from RNA 3 of tomato aspermy cucumovirus. J Gen Virol 78:505–510
    [Google Scholar]
  55. Ta M., Vrati S. 2000; Mov34 protein from mouse brain interacts with the 3′ noncoding region of Japanese encephalitis virus. J Virol 74:5108–5115 [CrossRef]
    [Google Scholar]
  56. Tajima S., Takasaki T., Matsuno S., Nakayama M., Kurane I. 2005; Genetic characterization of Yokose virus, a flavivirus isolated from the bat in Japan. Virology 332:38–44 [CrossRef]
    [Google Scholar]
  57. Thurner C., Witwer C., Hofacker I. L., Stadler P. F. 2004; Conserved RNA secondary structures in Flaviviridae genomes. J Gen Virol 85:1113–1124 [CrossRef]
    [Google Scholar]
  58. Tilgner M., Deas T. S., Shi P. Y. 2005; The flavivirus-conserved penta-nucleotide in the 3′ stem-loop of the West Nile virus genome requires a specific sequence and structure for RNA synthesis, but not for viral translation. Virology 331:375–386 [CrossRef]
    [Google Scholar]
  59. Uchil P. D., Satchidanandam V. 2003; Architecture of the flaviviral replication complex. Protease, nuclease, and detergents reveal encasement within double-layered membrane compartments. J Biol Chem 278:24388–24398 [CrossRef]
    [Google Scholar]
  60. Wang E., Weaver S. C., Shope R. E., Tesh R. B., Watts D. M., Barrett A. D. 1996; Genetic variation in yellow fever virus: duplication in the 3′ noncoding region of strains from Africa. Virology 225:274–281 [CrossRef]
    [Google Scholar]
  61. Warren C. E., Murphy J. F. 2003; The complete nucleotide sequence of Pepper mottle virus-Florida RNA. Arch Virol 148:189–197 [CrossRef]
    [Google Scholar]
  62. Westaway E. G., Mackenzie J. M., Khromykh A. A. 2002; Replication and gene function in Kunjin virus. Curr Top Microbiol Immunol 267:323–351
    [Google Scholar]
  63. Westaway E. G., Mackenzie J. M., Khromykh A. A. 2003; Kunjin RNA replication and applications of Kunjin replicons. Adv Virus Res 59:99–140
    [Google Scholar]
  64. You S., Padmanabhan R. 1999; A novel in vitro replication system for Dengue virus. Initiation of RNA synthesis at the 3′-end of exogenous viral RNA templates requires 5′- and 3′-terminal complementary sequence motifs of the viral RNA. J Biol Chem 274:33714–33722 [CrossRef]
    [Google Scholar]
  65. You S., Falgout B., Markoff L., Padmanabhan R. 2001; In vitro RNA synthesis from exogenous dengue viral RNA templates requires long range interactions between 5′- and 3′-terminal regions that influence RNA structure. J Biol Chem 276:15581–15591 [CrossRef]
    [Google Scholar]
  66. Zanotto P. M., Gould E. A., Gao G. F., Harvey P. H., Holmes E. C. 1996; Population dynamics of flaviviruses revealed by molecular phylogenies. Proc Natl Acad Sci U S A 93:548–553 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82235-0
Loading
/content/journal/jgv/10.1099/vir.0.82235-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error