1887

Abstract

A recombinant form of yellow fever virus (YFV) NS3 protease, linked via a nonapeptide to the minimal NS2B co-factor sequence (CF40-gly-NS3pro190), was expressed in and shown to be catalytically active. It efficiently cleaved the fluorogenic tetrapeptide substrate Bz-norleucine-lysine-arginine-arginine-AMC, which was previously optimized for dengue virus NS2B/3 protease. A series of small peptidic inhibitors based on this substrate sequence readily inhibited its enzymic activity. To understand the structure–activity relationship of the inhibitors, they were docked into a homology model of the YFV NS2B/NS3 protease structure. The results revealed that the P1 and P2 positions are most important for inhibitor binding, whilst the P3 and P4 positions have much less effect. These findings indicate that the characteristics of YFV protease are very similar to those reported for dengue and West Nile virus proteases, and suggest that pan-flavivirus NS3 protease drugs may be developed for flaviviral diseases.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.82735-0
2007-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/88/8/2223.html?itemId=/content/journal/jgv/10.1099/vir.0.82735-0&mimeType=html&fmt=ahah

References

  1. Amberg S. M., Nestorowicz A., McCourt D. W., Rice C. M. 1994; NS2B–3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies. J Virol 68:3794–3802
    [Google Scholar]
  2. Barrett A. D., Higgs S. 2007; Yellow fever: a disease that has yet to be conquered. Annu Rev Entomol 52:209–229 [CrossRef]
    [Google Scholar]
  3. Bazan J. F., Fletterick R. J. 1989; Detection of a trypsin-like serine protease domain in flaviviruses and pestiviruses. Virology 171:637–639 [CrossRef]
    [Google Scholar]
  4. Bessaud M., Pastorino B. A. M., Peyrefitte C. N., Rolland D., Grandadam M., Tolou H. J. 2006; Functional characterization of the N2B/NS3 protease complex from seven viruses belonging to different groups inside the genus Flavivirus . Virus Res 120:79–90 [CrossRef]
    [Google Scholar]
  5. Chambers T. J., Hahn C. S., Galler R., Rice C. M. 1990a; Flavivirus genome organization, expression, and replication. Annu Rev Microbiol 44:649–688 [CrossRef]
    [Google Scholar]
  6. Chambers T. J., Weir R. C., Grakoui A., McCourt D. W., Bazan J. F., Fletterick R. J., Rice C. M. 1990b; Evidence that the N-terminal domain of nonstructural protein NS3 from yellow fever virus is a serine protease responsible for site-specific cleavages in the viral polyprotein. Proc Natl Acad Sci U S A 87:8898–8902 [CrossRef]
    [Google Scholar]
  7. Chambers T. J., Grakoui A., Rice C. M. 1991; Processing of the yellow fever virus nonstructural polyprotein: a catalytically active NS3 proteinase domain and NS2B are required for cleavages at dibasic sites. J Virol 65:6042–6050
    [Google Scholar]
  8. Chambers T. J., Nestorowicz A., Amberg S. M., Rice C. M. 1993; Mutagenesis of the yellow fever virus NS2B protein: effects on proteolytic processing, NS2B–NS3 complex formation, and viral replication. J Virol 67:6797–6807
    [Google Scholar]
  9. Chambers T. J., Nestorowicz A., Rice C. M. 1995; Mutagenesis of the yellow fever virus NS2B/3 cleavage site: determinants of cleavage site specificity and effects on polyprotein processing and viral replication. J Virol 69:1600–1605
    [Google Scholar]
  10. Chambers T. J., Droll A. D., Tang Y., Liang Y., Ganesh V. K., Murthy K. H. M., Nickells M. 2005; Yellow fever virus NS2B–NS3 protease: characterization of charged-to-alanine mutant and revertant viruses and analysis of polyprotein-cleavage activities. J Gen Virol 86:1403–1413 [CrossRef]
    [Google Scholar]
  11. Chappell K. J., Stoermer M. J., Fairlie D. P., Young P. R. 2006; West Nile virus NS3 protease: insights into substrate binding and processing through combined modelling, protease mutagenesis and kinetic studies. J Biol Chem 281:38448–38458 [CrossRef]
    [Google Scholar]
  12. Copeland R. A. 2000 Enzymes: a Practical Introduction to Structure, Mechanism and Data Analysis , 2nd edn. New York: Wiley;
    [Google Scholar]
  13. Droll D. A., Murthy H. M. K., Chambers T. J. 2000; Yellow fever virus NS2B–NS3 protease: charged-to-alanine mutagenesis and deletion analysis define regions important for protease complex formation and function. Virology 275:335–347 [CrossRef]
    [Google Scholar]
  14. Erbel P., Schiering N., D'Arcy A., Renatus M., Kroemer M., Lim S. P., Yin Z., Keller T. H., Vasudevan S. G., Hommel U. 2006; Structural basis for the activation of flaviviral NS3 proteases from dengue and West Nile virus. Nat Struct Mol Biol 13:372–373 [CrossRef]
    [Google Scholar]
  15. Falgout B., Pethel M., Zhang Y. M., Lai C. J. 1991; Both nonstructural proteins NS2B and NS3 are required for the proteolytic processing of dengue virus nonstructural proteins. J Virol 65:2467–2475
    [Google Scholar]
  16. Falgout B., Miller R. H., Lai C. J. 1993; Deletion analysis of dengue virus type 4 nonstructural protein NS2B: identification of a domain required for NS2B–NS3 protease activity. J Virol 67:2034–2042
    [Google Scholar]
  17. Ganesh V. K., Muller N., Judge K., Luan C. H., Padmanabhan R., Murthy K. H. 2005; Identification and characterization of nonsubstrate based inhibitors of the essential dengue and West Nile virus proteases. Bioorg Med Chem 13:257–264 [CrossRef]
    [Google Scholar]
  18. Gorbalenya A. E., Donchenko A. P., Koonin E. V., Blinov V. M. 1989; N-terminal domains of putative helicases of flavi- and pestiviruses may be serine proteases. Nucleic Acids Res 17:3889–3897 [CrossRef]
    [Google Scholar]
  19. Knox J. E., Ma N. L., Yin Z., Patel S. J., Wang W. L., Chan W. L., Ranga Rao K. R., Wang G., Ngew X. other authors 2006; Peptide inhibitors of West Nile NS3 protease: SAR study of tetrapeptide aldehyde inhibitors. J Med Chem 49:6585–6590 [CrossRef]
    [Google Scholar]
  20. Leung D., Schroder K., White H., Fang N. X., Stoermer M. J., Abbenante G., Martin J. L., Young P. R., Fairlie D. P. 2001; Activity of recombinant dengue 2 virus NS3 protease in the presence of a truncated NS2B co-factor, small peptide substrates, and inhibitors. J Biol Chem 276:45762–45771 [CrossRef]
    [Google Scholar]
  21. Li J., Lim S. P., Beer D., Patel V., Wen D., Tumanut C., Tully D. C., Williams J. A., Jiricek J. other authors 2005; Functional profiling of recombinant NS3 proteases from all four serotypes of dengue virus using tetra- and octa-peptide substrate libraries. J Biol Chem 280:28766–28774 [CrossRef]
    [Google Scholar]
  22. Nall T. A., Chappell K. J., Stoermer M. J., Fang N. X., Tyndall J. D., Young P. R., Fairlie D. P. 2004; Enzymatic characterization and homology model of a catalytically active recombinant West Nile virus NS3 protease. J Biol Chem 279:48535–48542 [CrossRef]
    [Google Scholar]
  23. Niyomrattanakit P., Yahorava S., Mutule I., Mutulis F., Petrovska R., Prusis P., Katzenmeier G., Wikberg J. E. 2006; Probing the substrate specificity of the dengue virus type 2 NS3 serine protease by using internally quenched fluorescent peptides. Biochem J 397:203–211 [CrossRef]
    [Google Scholar]
  24. Rice C. M., Lenches E. M., Eddy S. R., Shin S. J., Sheets R. L., Strauss J. H. 1985; Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science 229:726–733 [CrossRef]
    [Google Scholar]
  25. Yin Z., Patel S. J., Wang W.-L., Wang G., Chan W. L., Ranga Rao K. R., Alam J., Jeyaraj D. A., Ngew X. other authors 2006a; Peptide inhibitors of dengue virus NS3 protease. 1. Warhead. Bioorg Med Chem Lett 16:36–39 [CrossRef]
    [Google Scholar]
  26. Yin Z., Patel S. J., Wang W.-L., Chan W. L., Ranga Rao K. R., Wang G., Ngew X., Patel V., Beer D. other authors 2006b; Peptide inhibitors of dengue virus NS3 protease. 2. SAR study of tetrapeptide aldehyde inhibitors. Bioorg Med Chem Lett 16:40–43 [CrossRef]
    [Google Scholar]
  27. Yusof R., Clum S., Wetzel M., Murthy H. M., Padmanabhan R. 2000; Purified NS2B/NS3 serine protease of dengue virus type 2 exhibits cofactor NS2B dependence for cleavage of substrates with dibasic amino acids in vitro. J Biol Chem 275:9963–9969 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.82735-0
Loading
/content/journal/jgv/10.1099/vir.0.82735-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error