1887

Abstract

The cytotoxicity of Semliki Forest virus (SFV) infection is caused partly by the non-structural protein nsP2, an essential component of the SFV replicase complex. Due to the presence of a nuclear localization signal (NLS), nsP2 also localizes in the nucleus of infected cells. The present study analysed recombinant SFV replicons and genomes with various deletions or substitutions in the NLS, or with a proline-to-glycine mutation at position 718 of nsP2 (P718G). Deletion of one or two arginine residues from the NLS or substitution of two of the arginines with aspartic acid resulted in a virus with a temperature-sensitive phenotype, and substitution of all three arginines was lethal. Thus, most of the introduced mutations severely affected nsP2 functioning in viral replication; in addition, they inhibited the ability of SFV to induce translational shut-off and kill infected cells. SFV replicons with a P718G mutation or replacement of the NLS residues RRR with RDD were found to be the least cytotoxic. Corresponding replicons expressed non-structural proteins at normal levels, but had severely reduced genomic RNA synthesis and were virtually unable to replicate and transcribe co-electroporated helper RNA. The non-cytotoxic phenotype was maintained in SFV full-length genomes harbouring the corresponding mutations; however, during a single cycle of cell culture, these were converted to a cytotoxic phenotype, probably due to the accumulation of compensatory mutations.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83320-0
2008-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/3/676.html?itemId=/content/journal/jgv/10.1099/vir.0.83320-0&mimeType=html&fmt=ahah

References

  1. Agapov E. V., Frolov I., Lindenbach B. D., Pragai B. M., Schlesinger S., Rice C. M. 1998; Noncytopathic Sindbis virus RNA vectors for heterologous gene expression. Proc Natl Acad Sci U S A 95:12989–12994 [CrossRef]
    [Google Scholar]
  2. Balistreri G., Caldentey J., Kaariainen L., Ahola T. 2007; Enzymatic defects of the nsP2 proteins of Semliki Forest virus temperature-sensitive mutants. J Virol 81:2849–2860 [CrossRef]
    [Google Scholar]
  3. Dryga S. A., Dryga O. A., Schlesinger S. 1997; Identification of mutations in a Sindbis virus variant able to establish persistent infection in BHK cells: the importance of a mutation in the nsP2 gene. Virology 228:74–83 [CrossRef]
    [Google Scholar]
  4. Fazakerley J. K., Boyd A., Mikkola M. L., Kaariainen L. 2002; A single amino acid change in the nuclear localization sequence of the nsP2 protein affects the neurovirulence of Semliki Forest virus. J Virol 76:392–396 [CrossRef]
    [Google Scholar]
  5. Frolov I., Agapov E., Hoffman T. A. Jr, Pragai B. M., Lippa M., Schlesinger S., Rice C. M. 1999; Selection of RNA replicons capable of persistent noncytopathic replication in mammalian cells. J Virol 73:3854–3865
    [Google Scholar]
  6. Garmashova N., Gorchakov R., Frolova E., Frolov I. 2006; Sindbis virus nonstructural protein nsP2 is cytotoxic and inhibits cellular transcription. J Virol 80:5686–5696 [CrossRef]
    [Google Scholar]
  7. Garmashova N., Gorchakov R., Volkova E., Paessler S., Frolova E., Frolov I. 2007; The Old World and New World alphaviruses use different virus-specific proteins for induction of transcriptional shutoff. J Virol 81:2472–2484 [CrossRef]
    [Google Scholar]
  8. Glasgow G. M., McGee M. M., Sheahan B. J., Atkins G. J. 1997; Death mechanisms in cultured cells infected by Semliki Forest virus. J Gen Virol 78:1559–1563
    [Google Scholar]
  9. Gomez de Cedron M., Ehsani N., Mikkola M. L., Garcia J. A., Kaariainen L. 1999; RNA helicase activity of Semliki Forest virus replicase protein NSP2. FEBS Lett 448:19–22 [CrossRef]
    [Google Scholar]
  10. Gorchakov R., Frolova E., Williams B. R., Rice C. M., Frolov I. 2004; PKR-dependent and -independent mechanisms are involved in translational shutoff during Sindbis virus infection. J Virol 78:8455–8467 [CrossRef]
    [Google Scholar]
  11. Gorchakov R., Frolova E., Frolov I. 2005; Inhibition of transcription and translation in Sindbis virus-infected cells. J Virol 79:9397–9409 [CrossRef]
    [Google Scholar]
  12. Karlsson G. B., Liljestrom P. 2003; Live viral vectors: Semliki Forest virus. Methods Mol Med 87:69–82
    [Google Scholar]
  13. Liljestrom P., Garoff H. 1991; A new generation of animal cell expression vectors based on the Semliki Forest virus replicon. Biotechnology (N Y) 9:1356–1361 [CrossRef]
    [Google Scholar]
  14. Liljestrom P., Lusa S., Huylebroeck D., Garoff H. 1991; In vitro mutagenesis of a full-length cDNA clone of Semliki Forest virus: the small 6,000-molecular-weight membrane protein modulates virus release. J Virol 65:4107–4113
    [Google Scholar]
  15. Lundstrom K., Rotmann D., Hermann D., Schneider E. M., Ehrengruber M. U. 2001; Novel mutant Semliki Forest virus vectors: gene expression and localization studies in neuronal cells. Histochem Cell Biol 115:83–91 [CrossRef]
    [Google Scholar]
  16. Lundstrom K., Abenavoli A., Malgaroli A., Ehrengruber M. U. 2003; Novel Semliki Forest virus vectors with reduced cytotoxicity and temperature sensitivity for long-term enhancement of transgene expression. Mol Ther 7:202–209 [CrossRef]
    [Google Scholar]
  17. Nieva J. L., Sanz M. A., Carrasco L. 2004; Membrane-permeabilizing motif in Semliki forest virus E1 glycoprotein. FEBS Lett 576:417–422 [CrossRef]
    [Google Scholar]
  18. Peranen J., Rikkonen M., Liljestrom P., Kaariainen L. 1990; Nuclear localization of Semliki Forest virus-specific nonstructural protein nsP2. J Virol 64:1888–1896
    [Google Scholar]
  19. Perri S., Driver D. A., Gardner J. P., Sherrill S., Belli B. A., Dubensky T. W. Jr, Polo J. M. 2000; Replicon vectors derived from Sindbis virus and Semliki forest virus that establish persistent replication in host cells. J Virol 74:9802–9807 [CrossRef]
    [Google Scholar]
  20. Rikkonen M. 1996; Functional significance of the nuclear-targeting and NTP-binding motifs of Semliki Forest virus nonstructural protein nsP2. Virology 218:352–361 [CrossRef]
    [Google Scholar]
  21. Rikkonen M., Peranen J., Kaariainen L. 1992; Nuclear and nucleolar targeting signals of Semliki Forest virus nonstructural protein nsP2. Virology 189:462–473 [CrossRef]
    [Google Scholar]
  22. Rikkonen M., Peranen J., Kaariainen L. 1994a; ATPase and GTPase activities associated with Semliki Forest virus nonstructural protein nsP2. J Virol 68:5804–5810
    [Google Scholar]
  23. Rikkonen M., Peranen J., Kaariainen L. 1994b; Nuclear targeting of Semliki Forest virus nsP2. Arch Virol Suppl 9:369–377
    [Google Scholar]
  24. Salonen A., Vasiljeva L., Merits A., Magden J., Jokitalo E., Kaariainen L. 2003; Properly folded nonstructural polyprotein directs the Semliki Forest virus replication complex to the endosomal compartment. J Virol 77:1691–1702 [CrossRef]
    [Google Scholar]
  25. Sawicki D. L., Perri S., Polo J. M., Sawicki S. G. 2006; Role for nsP2 proteins in the cessation of alphavirus minus-strand synthesis by host cells. J Virol 80:360–371 [CrossRef]
    [Google Scholar]
  26. Singh I., Helenius A. 1992; Role of ribosomes in Semliki Forest virus nucleocapsid uncoating. J Virol 66:7049–7058
    [Google Scholar]
  27. Sjoberg E. M., Suomalainen M., Garoff H. 1994; A significantly improved Semliki Forest virus expression system based on translation enhancer segments from the viral capsid gene. Biotechnology (N Y) 12:1127–1131 [CrossRef]
    [Google Scholar]
  28. Smerdou C., Liljestrom P. 1999; Two-helper RNA system for production of recombinant Semliki forest virus particles. J Virol 73:1092–1098
    [Google Scholar]
  29. Strauss J. H., Strauss E. G. 1994; The alphaviruses: gene expression, replication, and evolution. Microbiol Rev 58:491–562
    [Google Scholar]
  30. Vasiljeva L., Merits A., Auvinen P., Kaariainen L. 2000; Identification of a novel function of the alphavirus capping apparatus. RNA 5′-triphosphatase activity of Nsp2. J Biol Chem 275:17281–17287 [CrossRef]
    [Google Scholar]
  31. Wengler G., Koschinski A., Wengler G., Dreyer F. 2003; Entry of alphaviruses at the plasma membrane converts the viral surface proteins into an ion-permeable pore that can be detected by electrophysiological analyses of whole-cell membrane currents. J Gen Virol 84:173–181 [CrossRef]
    [Google Scholar]
  32. White C. L., Thomson M., Dimmock N. J. 1998; Deletion analysis of a defective interfering Semliki Forest virus RNA genome defines a region in the nsP2 sequence that is required for efficient packaging of the genome into virus particles. J Virol 72:4320–4326
    [Google Scholar]
  33. Zusinaite E., Tints K., Kiiver K., Spuul P., Karo-Astover L., Merits A., Sarand I. 2007; Mutations at the palmitoylation site of non-structural protein nsP1 of Semliki Forest virus attenuate virus replication and cause accumulation of compensatory mutations. J Gen Virol 88:1977–1985 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83320-0
Loading
/content/journal/jgv/10.1099/vir.0.83320-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error