1887

Abstract

To analyse the potential karyophilic activity of prototype foamy viruses (PFVs), we expressed the PFV integrase (IN) and its mutants as fusion proteins with enhanced green fluorescence protein. The subcellular localization of the fusion proteins was investigated by fluorescence microscopy. The PFV IN was found to be karyophilic and targeted the fusion protein to the nucleus. Mutational analyses demonstrated that the PFV IN contains a potent but non-transferable nuclear localization signal (NLS) in its C-terminal domain and contains five arginine and lysine residues between amino acids 308 and 329 that are critical for its NLS function.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/vir.0.83689-0
2008-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/jgv/89/7/1680.html?itemId=/content/journal/jgv/10.1099/vir.0.83689-0&mimeType=html&fmt=ahah

References

  1. Achong B. G., Mansell P. W., Epstein M. A., Clifford P. 1971; An unusual virus in cultures from a human nasopharyngeal carcinoma. J Natl Cancer Inst 46:299–307
    [Google Scholar]
  2. Armon-Omer A., Graessman A., Loyter A. 2004; A synthetic peptide bearing the HIV-1 integrase 161–173 amino acid residues mediates active nuclear import and binding to import and binding importin α : characterization of a functional nuclear localization signal. J Mol Biol 336:1117–1128 [CrossRef]
    [Google Scholar]
  3. Asante-Appiah E., Skalka A. M. 1997; Molecular mechanism in retrovirus DNA integration. Antiviral Res 36:139–156 [CrossRef]
    [Google Scholar]
  4. Boulikas T. 1993; Nuclear localization signals (NLS. Crit Rev Eukaryot Gene Expr 3:193–227
    [Google Scholar]
  5. Bouyac-Bertoia M., Dvorin J. D., Fouchier R. A., Jenkins Y., Meyer B. E., Wu L. I., Emerman M., Malim M. H. 2001; HIV-1 infection requires a functional integrase NLS. Mol Cell 7:1025–1035 [CrossRef]
    [Google Scholar]
  6. Brown P. O. 1997; Integration. In Retroviruses pp 161–204Edited by Coffin J. M., Hughes S. H., Varmus. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  7. Bushman F. D., Fujiwara T., Craigie R. 1990; Retroviral integration directed by HIV integration protein in vitro . Science 249:1555–1558 [CrossRef]
    [Google Scholar]
  8. Busschots K., Vercammen J., Emiliani S., Benarous R., Engelborghs Y., Christ F., Debyser Z. 2005; The interaction of LEDGE/p75 with integrase is lentivirus-specific and promotes DNA binding. J Biol Chem 280:17841–17847 [CrossRef]
    [Google Scholar]
  9. Busschots K., Voet A., Maeyer M., Rain J., Emiliani S., Benarous R., Desender L., Debyser Z., Christ F. 2007; Identification of the LEDGE/p75 binding site in HIV-1 integrase. J Mol Biol 365:1480–1492 [CrossRef]
    [Google Scholar]
  10. Cherepanov P. 2007; LEDGE/p75 interacts with divergent lentiviral integrases and modulates their enzymatic activity in vitro . Nucleic Acids Res 35:113–124 [CrossRef]
    [Google Scholar]
  11. Craigie R. 2001; HIV integrase, a brief overview from chemistry to therapeutics. J Biol Chem 276:23213–23216 [CrossRef]
    [Google Scholar]
  12. Dingwall C., Laskey R. A. 1991; Nuclear targeting sequences − a consensus?. Trends Biochem Sci 16:478–481 [CrossRef]
    [Google Scholar]
  13. Emiliani S., Mousnier A., Busschots K., Maroun M., Maele B., Tempe D., Vandekerckhove L., Moisant F., Ben-Slama L. other authors 2005; Integrase mutants defective for interaction with LEDGE/p75 are impaired in chromosome tethering and HIV-1 replication. J Biol Chem 280:25517–25523 [CrossRef]
    [Google Scholar]
  14. Engelman A., Mizuuchi K., Craigie R. 1991; HIV-1 DNA integration: mechanism of viral DNA cleavage and DNA strand transfer. Cell 67:1211–1221 [CrossRef]
    [Google Scholar]
  15. Enssle J., Moebes A., Heinkelein M., Panhuysen M., Mauer B., Schweizer M., Neumann-Haefelin D., Rethwilm A. 1999; An active foamy virus integrase is required for viral replication. J Gen Virol 80:1445–1452
    [Google Scholar]
  16. Farnet C. M., Haseltine W. A. 1991; Circularization of human immunodeficiency virus type 1 in vivo . J Virol 65:6942–6952
    [Google Scholar]
  17. Fassati A., Gorlich D., Harrison I., Zaytseva L., Mingot J.-M. 2003; Nuclear import of HIV-1 intracellular reverse transcription complexes is mediated by importin 7. EMBO J 22:3675–3685 [CrossRef]
    [Google Scholar]
  18. Gallay P., Hope T., Chin D., Trono D. 1997; HIV-1 infection of nondividing cells through the recognition of integration of integrase by the importin/karyopherin pathway. Proc Natl Acad Sci U S A 94:9825–9830 [CrossRef]
    [Google Scholar]
  19. Gorlich D., Kutay U. 1999; Transport between the cell nucleus and the cytoplasm. Annu Rev Cell Dev Biol 15:607–660 [CrossRef]
    [Google Scholar]
  20. Imrich H., Heinkelein M., Herchenroder O., Rethwilm A. 2000; Primate foamy virus Pol proteins are imported into the nucleus. J Gen Virol 81:2941–2947
    [Google Scholar]
  21. Kukolj G., Jones K. S., Skalka A. M. 1997; Subcellular localization of avian sarcoma virus and human immunodeficiency virus type 1 integrases. J Virol 71:843–847
    [Google Scholar]
  22. Lee H. S., Kang S. Y., Shin C.-G. 2005; Characterization of the functional domains of human foamy virus integrase using chimeric integrases. Mol Cells 19:246–255
    [Google Scholar]
  23. Linial M. L. 1999; Foamy viruses are unconventional retroviruses. J Virol 73:1747–1755
    [Google Scholar]
  24. Llano M., Vanegas M., Fregoso O., Saenz D., Chung S., Peretz M., Poeschla M. 2004; LEDGE/p75 determines cellular trafficking of diverse lentiviral but not murine oncoretroviral integrase proteins and is a component of functional lentiviral preintegration complexes. J Virol 78:9524–9537 [CrossRef]
    [Google Scholar]
  25. Moebes A., Enssle J., Bieniasz P. D., Heinkelein M., Lindermann D., Bock M., McClure M. O., Rethwilm A. 1997; Human foamy virus reverse transcription that occurs late in the viral replication cycle. J Virol 71:7305–7311
    [Google Scholar]
  26. Pahl A., Flugel R. M. 1993; Endonucleolytic cleavages and DNA-joining activities of the integration protein of human foamy virus. J Virol 67:5426–5434
    [Google Scholar]
  27. Pahl A., Flugel R. M. 1995; Characterization of the human spuma retrovirus integrase by site-directed mutagenesis, complementation analysis, and by swapping the zinc finger domain of HIV-1. J Biol Chem 270:2957–2966 [CrossRef]
    [Google Scholar]
  28. Rethwilm A. 1996; Unexpected replication pathways of foamy viruses. J Acquir Immune Defic Syndr Hum Retrovirol 13 (Suppl. 1:S248–S253 [CrossRef]
    [Google Scholar]
  29. Rijck J., Vanderkerckhove L., Christ F., Debyser Z. 2007; Lentiviral nuclear import: a complex interplay between virus and host. Bioessays 29:441–451 [CrossRef]
    [Google Scholar]
  30. Silver P. A. 1991; How proteins enter the nucleus. Cell 64:489–497 [CrossRef]
    [Google Scholar]
  31. Turlure F., Devroe E., Silver A., Engelman A. 2004; Human cell proteins and human immunodeficiency virus DNA integration. Front Biosci 9:3187–3208 [CrossRef]
    [Google Scholar]
  32. Weiss R. A. 1996; Foamy viruses bubble on. Nature 380:201 [CrossRef]
    [Google Scholar]
  33. Woodward C. L., Wang Y., Dixon W. J., Htun H., Chow S. A. 2003; Subcellular localization of feline immunodeficiency virus integrase and mapping of its karyophilic determinant. J Virol 77:4516–4527 [CrossRef]
    [Google Scholar]
  34. Yu S. F., Sullivan M. D., Linial M. L. 1999; Evidence that the human foamy virus genome is DNA. J Virol 73:1565–1572
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/vir.0.83689-0
Loading
/content/journal/jgv/10.1099/vir.0.83689-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error