1887

Abstract

Haemophilus influenzae, originally named Pfeiffer’s bacillus after its discoverer Richard Pfeiffer in 1892, was a major risk for global health at the beginning of the 20th century, causing childhood pneumonia and invasive disease as well as otitis media and other upper respiratory tract infections. The implementation of the Hib vaccine, targeting the major capsule type of H. influenzae, almost eradicated the disease in countries that adapted the vaccination scheme. However, a rising number of infections are caused by non-typeable H. influenzae (NTHi), which has no capsule and against which the vaccine therefore provides no protection, as well as other serotypes equally not recognised by the vaccine. The first line of treatment is ampicillin, but there is a steady rise in ampicillin resistance. This is both through acquired as well as intrinsic mechanisms, and is cause for serious concern and the need for more surveillance. There are also increasing reports of new modifications of the intrinsic ampicillin-resistance mechanism leading to resistance against cephalosporins and carbapenems, the last line of well-tolerated drugs, and ampicillin-resistant H. influenzae was included in the recently released priority list of antibiotic-resistant bacteria by the WHO. This review provides an overview of ampicillin resistance prevalence and mechanisms in the context of our current knowledge about population dynamics of H. influenzae.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/mgen/10.1099/mgen.0.000214
2018-09-12
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/mgen/4/9/mgen000214.html?itemId=/content/journal/mgen/10.1099/mgen.0.000214&mimeType=html&fmt=ahah

References

  1. Pittman M. Variation and type specificity in the bacterial species Hemophilus influenzae. J Exp Med 1931; 53:471–492 [View Article][PubMed]
    [Google Scholar]
  2. Kroll JS, Moxon ER. Capsulation and gene copy number at the cap locus of Haemophilus influenzae type b. J Bacteriol 1988; 170:859–864 [View Article]
    [Google Scholar]
  3. Stuy JH. On the nature of nontypable Haemophilus influenzae. Antonie van Leeuwenhoek 1978; 44:367–376 [View Article][PubMed]
    [Google Scholar]
  4. World Health Organization 2018; Immunization, vaccines and biologicals - data, statistics and graphics. www.who.int/immunization/monitoring_surveillance/data/en/
  5. Lee LA, Franzel L, Atwell J, Datta SD, Friberg IK et al. The estimated mortality impact of vaccinations forecast to be administered during 2011-2020 in 73 countries supported by the GAVI Alliance. Vaccine 2013; 31:B61–B72 [View Article][PubMed]
    [Google Scholar]
  6. GAVI 2018; Haemophilus influenzae type b vaccine support. www.gavi.org/support/nvs/hib/
  7. Ulanova M, Tsang RSW. Haemophilus influenzae serotype a as a cause of serious invasive infections. Lancet Infect Dis 2014; 14:70–82 [View Article]
    [Google Scholar]
  8. Nitta DM, Jackson MA, Burry VF, Olson LC. Invasive Haemophilus influenzae type f disease. Pediatr Infect Dis J 1995; 14:157–160
    [Google Scholar]
  9. Desai S, Jamieson FB, Patel SN, Seo CY, Dang V et al. The epidemiology of invasive Haemophilus influenzae non-serotype B disease in Ontario, Canada from 2004 to 2013. PLoS One 2015; 10:e0142179 [View Article][PubMed]
    [Google Scholar]
  10. Gilsdorf JR. What the pediatrician should know about non-typeable Haemophilus influenzae. J Infect 2015; 71:S10–S14 [View Article][PubMed]
    [Google Scholar]
  11. Duell BL, Su YC, Riesbeck K. Host–pathogen interactions of nontypeable Haemophilus influenzae: from commensal to pathogen. FEBS Lett 2016; 590:3840–3853 [View Article][PubMed]
    [Google Scholar]
  12. van Eldere J, Slack MPE, Ladhani S, Cripps AW. Non-typeable Haemophilus influenzae, an under-recognised pathogen. Lancet Infect Dis 2014; 14:1281–1292 [View Article]
    [Google Scholar]
  13. Jalalvand F, Riesbeck K. Update on non-typeable Haemophilus influenzae-mediated disease and vaccine development. Expert Rev Vaccines 2018; 17:503–512 [View Article][PubMed]
    [Google Scholar]
  14. Finney LJ, Ritchie A, Pollard E, Johnston SL, Mallia P. Lower airway colonization and inflammatory response in COPD: a focus on Haemophilus influenzae. Int J Chron Obstruct Pulmon Dis 2014; 9:1119–1132
    [Google Scholar]
  15. Dagan R, Leibovitz E. Bacterial eradication in the treatment of otitis media. Lancet Infect Dis 2002; 2:593–604 [View Article]
    [Google Scholar]
  16. World Health Organization 2018; Global health estimates 2016: deaths by cause, age, sex, by country and by region, 2000–2016. www.who.int/news-room/fact-sheets/detail/the-top-10-causes-of-death
  17. Cerquetti M, Giufrè M. Why we need a vaccine for non-typeable Haemophilus influenzae. Hum Vaccin Immunother 2016; 12:2357–2361 [View Article][PubMed]
    [Google Scholar]
  18. Tristram S, Jacobs MR, Appelbaum PC. Antimicrobial resistance in Haemophilus influenzae. Clin Microbiol Rev 2007; 20:368–389 [View Article][PubMed]
    [Google Scholar]
  19. Langereis JD, de Jonge MI. Invasive disease caused by nontypeable Haemophilus influenzae. Emerg Infect Dis 2015; 21:1711–1718 [View Article]
    [Google Scholar]
  20. Bamberger EE, Ben-Shimol S, Abu Raya B, Katz A, Givon-Lavi N et al. Pediatric invasive Haemophilus influenzae infections in Israel in the era of Haemophilus influenzae type b vaccine: a nationwide prospective study. Pediatr Infect Dis J 2014; 33:477–481 [View Article][PubMed]
    [Google Scholar]
  21. Berndsen MR, Erlendsdóttir H, Gottfredsson M. Evolving epidemiology of invasive Haemophilus infections in the post-vaccination era: results from a long-term population-based study. Clin Microbiol Infect 2012; 18:918–923 [View Article][PubMed]
    [Google Scholar]
  22. Resman F, Ristovski M, Ahl J, Forsgren A, Gilsdorf JR et al. Invasive disease caused by Haemophilus influenzae in Sweden 1997–2009; evidence of increasing incidence and clinical burden of non-type b strains. Clin Microbiol Infect 2011; 17:1638–1645 [View Article][PubMed]
    [Google Scholar]
  23. Zanella RC, Bokermann S, Andrade AL, Flannery B, Brandileone MC. Changes in serotype distribution of Haemophilus influenzae meningitis isolates identified through laboratory-based surveillance following routine childhood vaccination against H. influenzae type b in Brazil. Vaccine 2011; 29:8937–8942 [View Article][PubMed]
    [Google Scholar]
  24. Wan Sai Cheong J, Smith H, Heney C, Robson J, Schlebusch S et al. Trends in the epidemiology of invasive Haemophilus influenzae disease in Queensland, Australia from 2000 to 2013: what is the impact of an increase in invasive non-typable H. influenzae (NTHi)?. Epidemiol Infect 2015; 143:2993–3000 [View Article][PubMed]
    [Google Scholar]
  25. van Wessel K, Rodenburg GD, Veenhoven RH, Spanjaard L, van der Ende A et al. Nontypeable Haemophilus influenzae invasive disease in The Netherlands: a retrospective surveillance study 2001-2008. Clin Infect Dis 2011; 53:e1-7 [View Article][PubMed]
    [Google Scholar]
  26. Ahearn CP, Gallo MC, Murphy TF. Insights on persistent airway infection by non-typeable Haemophilus influenzae in chronic obstructive pulmonary disease. Pathog Dis 2017; 75: [View Article][PubMed]
    [Google Scholar]
  27. Park JT, Strominger JL. Mode of action of penicillin. Science 1957; 125:99–101
    [Google Scholar]
  28. Cho H, Uehara T, Bernhardt TG. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 2014; 159:1300–1311 [View Article][PubMed]
    [Google Scholar]
  29. Poole K. Resistance to β-lactam antibiotics. Cell Mol Life Sci 2004; 61:2200–2223 [View Article][PubMed]
    [Google Scholar]
  30. Wilson H, Török ME. Extended-spectrum β-lactamase-producing and carbapenemase-producing Enterobacteriaceae. Microb Genom 2018; 4: [View Article][PubMed]
    [Google Scholar]
  31. WHO 2017; Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. www.who.int/medicines/publications/WHO-PPL-Short_Summary_25Feb-ET_NM_WHO.pdf
  32. Mathies AW. Penicillins in the treatment of bacterial meningitis. J R Coll Physicians Lond 1972; 6:139–146
    [Google Scholar]
  33. Medeiros AA, O’Brien TF. Ampicillin-resistant Haemophilus influenzae type B possessing a TEM-type β-lactamase but little permeability barrier to ampicillin. Lancet Lond Engl 1975; 1:716–719
    [Google Scholar]
  34. Rubin LG, Medeiros AA, Yolken RH, Moxon ER. Ampicillin treatment failure of apparently β-lactamase-negative Haemophilus influenzae type b meningitis due to novel β-lactamase. Lancet Lond Engl 1981; 2:1008–1010 [View Article][PubMed]
    [Google Scholar]
  35. Leaves NI et al. Epidemiological studies of large resistance plasmids in Haemophilus. J Antimicrob Chemother 2000; 45:599–604 [View Article]
    [Google Scholar]
  36. Fleury C, Resman F, Rau J, Riesbeck K. Prevalence, distribution and transfer of small β-lactamase-containing plasmids in Swedish Haemophilus influenzae. J Antimicrob Chemother 2014; 69:1238–1242 [View Article][PubMed]
    [Google Scholar]
  37. San Millan A, Garcia-Cobos S, Escudero JA, Hidalgo L, Gutierrez B et al. Haemophilus influenzae clinical isolates with plasmid pB1000 bearing blaROB-1: fitness cost and interspecies dissemination. Antimicrob Agents Chemother 2010; 54:1506–1511 [View Article][PubMed]
    [Google Scholar]
  38. San Millan A, Escudero JA, Catalan A, Nieto S, Farelo F et al. β-lactam resistance in Haemophilus parasuis is mediated by plasmid pB1000 bearing blaROB-1. Antimicrob Agents Chemother 2007; 51:2260–2264 [View Article][PubMed]
    [Google Scholar]
  39. Coulton JW, Mason P, Dorrance D. The permeability barrier of Haemophilus influenzae type b against β-lactam antibiotics. J Antimicrob Chemother 1983; 12:435–449 [View Article][PubMed]
    [Google Scholar]
  40. Tristram SG, Nichols S. A multiplex PCR for β -lactamase genes of Haemophilus influenzae and description of a new blaTEM promoter variant. J Antimicrob Chemother 2006; 58:183–185 [View Article][PubMed]
    [Google Scholar]
  41. Tristram SG, Hawes R, Souprounov J. Variation in selected regions of blaTEM genes and promoters in Haemophilus influenzae. J Antimicrob Chemother 2005; 56:481–484 [View Article]
    [Google Scholar]
  42. Molina JM, Córdoba J, Monsoliu A, Diosdado N, Gobernado M. Haemophilus influenzae and betalactam resistance: description of bla TEM gene deletion. Rev Esp Quimioter 2003; 16:195–203[PubMed]
    [Google Scholar]
  43. Chen ST, Clowes RC. Nucleotide sequence comparisons of plasmids pHD131, pJB1, pFA3, and pFA7 and β-lactamase expression in Escherichia coli, Haemophilus influenzae, and Neisseria gonorrhoeae. J Bacteriol 1987; 169:3124–3130 [View Article]
    [Google Scholar]
  44. Cerquetti M, Giufrè M, Cardines R, Mastrantonio P. First characterization of heterogeneous resistance to imipenem in invasive nontypeable Haemophilus influenzae isolates. Antimicrob Agents Chemother 2007; 51:3155–3161 [View Article][PubMed]
    [Google Scholar]
  45. Kaczmarek FS, Gootz TD, Dib-Hajj F, Shang W, Hallowell S et al. Genetic and molecular characterization of β-lactamase-negative ampicillin-resistant Haemophilus influenzae with unusually high resistance to ampicillin. Antimicrob Agents Chemother 2004; 48:1630–1639 [View Article][PubMed]
    [Google Scholar]
  46. Ubukata K, Shibasaki Y, Yamamoto K, Chiba N, Hasegawa K et al. Association of amino acid substitutions in penicillin-binding protein 3 with β-lactam resistance in β-lactamase-negative ampicillin-resistant Haemophilus influenzae. Antimicrob Agents Chemother 2001; 45:1693–1699 [View Article][PubMed]
    [Google Scholar]
  47. García-Cobos S, Campos J, Lázaro E, Román F, Cercenado E et al. Ampicillin-resistant non-β-lactamase-producing Haemophilus influenzae in Spain: recent emergence of clonal isolates with increased resistance to cefotaxime and cefixime. Antimicrob Agents Chemother 2007; 51:2564–2573 [View Article][PubMed]
    [Google Scholar]
  48. Hotomi M, Fujihara K, Billal DS, Suzuki K, Nishimura T et al. Genetic characteristics and clonal dissemination of β-lactamase-negative ampicillin-resistant Haemophilus influenzae strains isolated from the upper respiratory tract of patients in Japan. Antimicrob Agents Chemother 2007; 51:3969–3976 [View Article][PubMed]
    [Google Scholar]
  49. Kuwabara N, Ching MS. A review of factors affecting vaccine preventable disease in Japan. Hawaii J Med Public Health 2014; 73:376–381[PubMed]
    [Google Scholar]
  50. Giufrè M, Daprai L, Cardines R, Bernaschi P, Ravà L et al. Carriage of Haemophilus influenzae in the oropharynx of young children and molecular epidemiology of the isolates after fifteen years of H. influenzae type b vaccination in Italy. Vaccine 2015; 33:6227–6234 [View Article]
    [Google Scholar]
  51. Jean S-S, Hsueh P-R. High burden of antimicrobial resistance in Asia. Int J Antimicrob Agents 2011; 37:291–295 [View Article]
    [Google Scholar]
  52. Hoban D, Felmingham D. The PROTEKT surveillance study: antimicrobial susceptibility of Haemophilus influenzae and Moraxella catarrhalis from community-acquired respiratory tract infections. J Antimicrob Chemother 2002; 50:49–59 [View Article][PubMed]
    [Google Scholar]
  53. Felmingham D, Grüneberg RN. The Alexander Project 1996–1997: latest susceptibility data from this international study of bacterial pathogens from community-acquired lower respiratory tract infections. J Antimicrob Chemother 2000; 45:191–203 [View Article][PubMed]
    [Google Scholar]
  54. Shiro H, Sato Y, Toyonaga Y, Hanaki H, Sunakawa K. Nationwide survey of the development of drug resistance in the pediatric field in 2000–2001, 2004, 2007, 2010, and 2012: evaluation of the changes in drug sensitivity of Haemophilus influenzae and patients' background factors. J Infect Chemother 2015; 21:247–256 [View Article][PubMed]
    [Google Scholar]
  55. Honda H, Sato T, Shinagawa M, Fukushima Y, Nakajima C et al. Multiclonal expansion and high prevalence of β-lactamase-negative high-level ampicillin-resistant Haemophilus influenzae in Japan, and susceptibility to quinolones. Antimicrob Agents Chemother 2018AAC.00851-18 [View Article][PubMed]
    [Google Scholar]
  56. Park C, Kim KH, Shin NY, Byun JH, Kwon EY et al. Genetic diversity of the ftsI gene in β-lactamase-nonproducing ampicillin-resistant and β-lactamase-producing amoxicillin-/clavulanic acid-resistant nasopharyngeal Haemophilus influenzae strains isolated from children in South Korea. Microb Drug Resist 2013; 19:224–230 [View Article][PubMed]
    [Google Scholar]
  57. Sanbongi Y, Suzuki T, Osaki Y, Senju N, Ida T et al. Molecular evolution of β-lactam-resistant Haemophilus influenzae: 9-year surveillance of penicillin-binding protein 3 mutations in isolates from Japan. Antimicrob Agents Chemother 2006; 50:2487–2492 [View Article][PubMed]
    [Google Scholar]
  58. Hashida K, Shiomori T, Hohchi N, Muratani T, Mori T et al. Nasopharyngeal Haemophilus influenzae carriage in Japanese children attending day-care centers. J Clin Microbiol 2008; 46:876–881 [View Article][PubMed]
    [Google Scholar]
  59. Hagiwara E, Baba T, Shinohara T, Nishihira R, Komatsu S et al. Antimicrobial resistance genotype trend and its association with host clinical characteristics in respiratory isolates of Haemophilus influenzae. Chemotherapy 2012; 58:352–357 [View Article][PubMed]
    [Google Scholar]
  60. Seyama S, Wajima T, Nakaminami H, Noguchi N. Clarithromycin resistance mechanisms of epidemic β-lactamase-nonproducing ampicillin-resistant Haemophilus influenzae strains in Japan. Antimicrob Agents Chemother 2016; 60:3207–3210 [View Article]
    [Google Scholar]
  61. Kitaoka K, Kimura K, Kitanaka H, Banno H, Jin W et al. Carbapenem-nonsusceptible Haemophilus influenzae with penicillin-binding protein 3 containing an amino acid insertion. Antimicrob Agents Chemother 2018; 62:e00671-18 [View Article][PubMed]
    [Google Scholar]
  62. Skaare D, Anthonisen IL, Kahlmeter G, Matuschek E, Natås OB et al. Emergence of clonally related multidrug resistant Haemophilus influenzae with penicillin-binding protein 3-mediated resistance to extended-spectrum cephalosporins, Norway, 2006 to 2013. Euro Surveill 2014; 19:20986 [View Article][PubMed]
    [Google Scholar]
  63. Fuursted K, Hartmeyer GN, Stegger M, Andersen PS, Justesen US. Molecular characterisation of the clonal emergence of high-level ciprofloxacin-monoresistant Haemophilus influenzae in the region of Southern Denmark. J Glob Antimicrob Resist 2016; 5:67–70 [View Article]
    [Google Scholar]
  64. Cherkaoui A, Diene SM, Renzoni A, Emonet S, Renzi G et al. Imipenem heteroresistance in nontypeable Haemophilus influenzae is linked to a combination of altered PBP3, slow drug influx and direct efflux regulation. Clin Microbiol Infect 2017; 23:118.e9–118.e19 [View Article][PubMed]
    [Google Scholar]
  65. Serisier DJ. Risks of population antimicrobial resistance associated with chronic macrolide use for inflammatory airway diseases. Lancet Respir Med 2013; 1:262–274 [View Article]
    [Google Scholar]
  66. Peric M, Bozdogan B, Jacobs MR, Appelbaum PC. Effects of an efflux mechanism and ribosomal mutations on macrolide susceptibility of Haemophilus influenzae clinical isolates. Antimicrob Agents Chemother 2003; 47:1017–1022 [View Article][PubMed]
    [Google Scholar]
  67. Bogdanovich T, Bozdogan B, Appelbaum PC. Effect of efflux on telithromycin and macrolide susceptibility in Haemophilus influenzae. Antimicrob Agents Chemother 2006; 50:893–898 [View Article][PubMed]
    [Google Scholar]
  68. Seyama S, Wajima T, Nakaminami H, Noguchi N. Amino acid substitution in the major multidrug efflux transporter protein AcrB contributes to low susceptibility to azithromycin in Haemophilus influenzae. Antimicrob Agents Chemother 2017; 61:e01337-17 [View Article][PubMed]
    [Google Scholar]
  69. Seyama S, Wajima T, Yanagisawa Y, Nakaminami H, Ushio M et al. Rise in Haemophilus influenzae with reduced quinolone susceptibility and development of a simple screening method. Pediatr Infect Dis J 2017; 36:263–266 [View Article]
    [Google Scholar]
  70. Kondo H, Ito S, Hatazaki K, Horie K, Nakane K et al. GyrA and/or ParC alterations of Haemophilus influenzae strains isolated from the urethra of men with acute urethritis. J Infect Chemother 2018; 24:232–235 [View Article][PubMed]
    [Google Scholar]
  71. Kuo SC, Chen PC, Shiau YR, Wang HY, Lai JF et al. Levofloxacin-resistant Haemophilus influenzae, Taiwan, 2004–2010. Emerg Infect Dis 2014; 20:1386–1390 [View Article][PubMed]
    [Google Scholar]
  72. Puig C, Tirado-Vélez JM, Calatayud L, Tubau F, Garmendia J et al. Molecular characterization of fluoroquinolone resistance in nontypeable Haemophilus influenzae clinical isolates. Antimicrob Agents Chemother 2015; 59:461–466 [View Article][PubMed]
    [Google Scholar]
  73. Fleischmann RD, Adams MD, White O, Clayton RA, Kirkness EF et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 1995; 269:496–512 [View Article][PubMed]
    [Google Scholar]
  74. Musser JM, Kroll JS, Granoff DM, Moxon ER, Brodeur BR et al. Global genetic structure and molecular epidemiology of encapsulated Haemophilus influenzae. Rev Infect Dis 1990; 12:75–111 [View Article][PubMed]
    [Google Scholar]
  75. Meats E, Feil EJ, Stringer S, Cody AJ, Goldstein R et al. Characterization of encapsulated and noncapsulated Haemophilus influenzae and determination of phylogenetic relationships by multilocus sequence typing. J Clin Microbiol 2003; 41:1623–1636 [View Article][PubMed]
    [Google Scholar]
  76. Kaur R, Chang A, Xu Q, Casey JR, Pichichero ME. Phylogenetic relatedness and diversity of non-typable Haemophilus influenzae in the nasopharynx and middle ear fluid of children with acute otitis media. J Med Microbiol 2011; 60:1841–1848 [View Article]
    [Google Scholar]
  77. de Chiara M, Hood D, Muzzi A, Pickard DJ, Perkins T et al. Genome sequencing of disease and carriage isolates of nontypeable Haemophilus influenzae identifies discrete population structure. Proc Natl Acad Sci USA 2014; 111:5439–5444 [View Article][PubMed]
    [Google Scholar]
  78. Power PM, Bentley SD, Parkhill J, Moxon ER, Hood DW. Investigations into genome diversity of Haemophilus influenzae using whole genome sequencing of clinical isolates and laboratory transformants. BMC Microbiol 2012; 12:273 [View Article][PubMed]
    [Google Scholar]
  79. Pettigrew MM, Ahearn CP, Gent JF, Kong Y, Gallo MC et al. Haemophilus influenzae genome evolution during persistence in the human airways in chronic obstructive pulmonary disease. Proc Natl Acad Sci USA 2018; 115:E3256E3265 [View Article][PubMed]
    [Google Scholar]
  80. Gallo MC, Kirkham C, Eng S, Bebawee RS, Kong Y et al. Changes in IgA protease expression are conferred by changes in genomes during persistent infection by nontypeable Haemophilus influenzae in chronic obstructive pulmonary disease. Infect Immun 2018; 86:e00313-18 [View Article][PubMed]
    [Google Scholar]
  81. Findlay WA, Redfield RJ. Coevolution of DNA uptake sequences and bacterial proteomes. Genome Biol Evol 2009; 1:45–55 [View Article][PubMed]
    [Google Scholar]
  82. Smith HO, Gwinn ML, Salzberg SL. DNA uptake signal sequences in naturally transformable bacteria. Res Microbiol 1999; 150:603–616 [View Article]
    [Google Scholar]
  83. Chen I, Dubnau D. DNA uptake during bacterial transformation. Nat Rev Microbiol 2004; 2:241–249 [View Article]
    [Google Scholar]
  84. Mell JC, Shumilina S, Hall IM, Redfield RJ. Transformation of natural genetic variation into Haemophilus influenzae genomes. PLoS Pathog 2011; 7:e1002151 [View Article][PubMed]
    [Google Scholar]
  85. Skaare D, Anthonisen IL, Caugant DA, Jenkins A, Steinbakk M et al. Multilocus sequence typing and ftsI sequencing: a powerful tool for surveillance of penicillin-binding protein 3-mediated beta-lactam resistance in nontypeable Haemophilus influenzae. BMC Microbiol 2014; 14:131 [View Article][PubMed]
    [Google Scholar]
  86. Witherden EA, Bajanca-Lavado MP, Tristram SG, Nunes A. Role of inter-species recombination of the ftsI gene in the dissemination of altered penicillin-binding-protein-3-mediated resistance in Haemophilus influenzae and Haemophilus haemolyticus. J Antimicrob Chemother 2014; 69:1501–1509 [View Article]
    [Google Scholar]
  87. Perez AC, Murphy TF. Potential impact of a Moraxella catarrhalis vaccine in COPD. Vaccine 2017 [View Article]
    [Google Scholar]
  88. Lai C-C, Lee K, Xiao Y, Ahmad N, Veeraraghavan B et al. High burden of antimicrobial drug resistance in Asia. J Glob Antimicrob Resist 2014; 2:141–147 [View Article]
    [Google Scholar]
  89. Lipsitch M, Siber GR. How can vaccines contribute to solving the antimicrobial resistance problem?. MBio 2016; 7:e00428-16 [View Article][PubMed]
    [Google Scholar]
  90. Devine VT, Cleary DW, Jefferies JMC, Anderson R, Morris DE et al. The rise and fall of pneumococcal serotypes carried in the PCV era. Vaccine 2017; 35:1293–1298 [View Article]
    [Google Scholar]
  91. Goto H, Shimada K, Ikemoto H, Oguri T. Study group on antimicrobial susceptibility of pathogens isolated from respiratory infections. Antimicrobial susceptibility of pathogens isolated from more than 10,000 patients with infectious respiratory diseases: a 25-year longitudinal study. J Infect Chemother Off J Jpn Soc Chemother 2009; 15:347–360
    [Google Scholar]
  92. Schaar V, Nordström T, Mörgelin M, Riesbeck K. Moraxella catarrhalis outer membrane vesicles carry β-lactamase and promote survival of Streptococcus pneumoniae and Haemophilus influenzae by inactivating amoxicillin. Antimicrob Agents Chemother 2011; 55:3845–3853 [View Article][PubMed]
    [Google Scholar]
  93. Schaar V, Uddbäck I, Nordström T, Riesbeck K. Group A streptococci are protected from amoxicillin-mediated killing by vesicles containing β-lactamase derived from Haemophilus influenzae. J Antimicrob Chemother 2014; 69:117–120 [View Article][PubMed]
    [Google Scholar]
  94. Cleary D, Devine V, Morris D, Osman K, Gladstone R et al. Pneumococcal vaccine impacts on the population genomics of non-typeable Haemophilus influenzae. Microb Genom 2018 [View Article][PubMed]
    [Google Scholar]
  95. Hammitt LL, Akech DO, Morpeth SC, Karani A, Kihuha N et al. Population effect of 10-valent pneumococcal conjugate vaccine on nasopharyngeal carriage of Streptococcus pneumoniae and non-typeable Haemophilus influenzae in Kilifi, Kenya: findings from cross-sectional carriage studies. Lancet Glob Health 2014; 2:e397-405 [View Article][PubMed]
    [Google Scholar]
  96. Prymula R, Kriz P, Kaliskova E, Pascal T, Poolman J et al. Effect of vaccination with pneumococcal capsular polysaccharides conjugated to Haemophilus influenzae-derived protein D on nasopharyngeal carriage of Streptococcus pneumoniae and H. influenzae in children under 2 years of age. Vaccine 2009; 28:71–78 [View Article]
    [Google Scholar]
  97. Prymula R, Peeters P, Chrobok V, Kriz P, Novakova E et al. Pneumococcal capsular polysaccharides conjugated to protein D for prevention of acute otitis media caused by both Streptococcus pneumoniae and non-typable Haemophilus influenzae: a randomised double-blind efficacy study. Lancet 2006; 367:740–748 [View Article][PubMed]
    [Google Scholar]
  98. Brandileone MC, Zanella RC, Almeida SCG, Brandao AP, Ribeiro AF et al. Effect of 10-valent pneumococcal conjugate vaccine on nasopharyngeal carriage of Streptococcus pneumoniae and Haemophilus influenzae among children in São Paulo, Brazil. Vaccine 2016; 34:5604–5611 [View Article][PubMed]
    [Google Scholar]
  99. Andrade DC, Borges IC, Bouzas ML, Oliveira JR, Fukutani KF et al. 10-valent pneumococcal conjugate vaccine (PCV10) decreases metabolic activity but not nasopharyngeal carriage of Streptococcus pneumoniae and Haemophilus influenzae. Vaccine 2017; 35:4105–4111 [View Article]
    [Google Scholar]
  100. van den Bergh MR, Spijkerman J, Swinnen KM, François NA, Pascal TG et al. Effects of the 10-valent pneumococcal nontypeable Haemophilus influenzae protein D-conjugate vaccine on nasopharyngeal bacterial colonization in young children: a randomized controlled trial. Clin Infect Dis 2013; 56:e30-9 [View Article][PubMed]
    [Google Scholar]
  101. Drawz SM, Bonomo RA. Three decades of β-lactamase inhibitors. Clin Microbiol Rev 2010; 23:160–201 [View Article][PubMed]
    [Google Scholar]
  102. Rotondo CM, Wright GD. Inhibitors of metallo-β-lactamases. Curr Opin Microbiol 2017; 39:96–105 [View Article]
    [Google Scholar]
  103. Zhanel GG, Lawrence CK, Adam H, Schweizer F, Zelenitsky S et al. Imipenem-relebactam and meropenem-vaborbactam: two novel carbapenem-β-lactamase inhibitor combinations. Drugs 2018; 78:65–98 [View Article][PubMed]
    [Google Scholar]
  104. Docquier JD, Mangani S. An update on β-lactamase inhibitor discovery and development. Drug Resist Updat 2018; 36:13–29 [View Article][PubMed]
    [Google Scholar]
  105. ECDC 2016; Surveillance of antimicrobial resistance in Europe. https://ecdc.europa.eu/sites/portal/files/documents/AMR-surveillance-Europe-2016.pdf
  106. Barbosa AR, Giufrè M, Cerquetti M, Bajanca-Lavado MP. Polymorphism in ftsI gene and β-lactam susceptibility in Portuguese Haemophilus influenzae strains: clonal dissemination of β-lactamase-positive isolates with decreased susceptibility to amoxicillin/clavulanic acid. J Antimicrob Chemother 2011; 66:788–796 [View Article][PubMed]
    [Google Scholar]
  107. Dabernat H, Delmas C. Epidemiology and evolution of antibiotic resistance of Haemophilus influenzae in children 5 years of age or less in France, 2001–2008: a retrospective database analysis. Eur J Clin Microbiol Infect Dis 2012; 31:2745–2753 [View Article][PubMed]
    [Google Scholar]
  108. Puig C, Grau I, Marti S, Tubau F, Calatayud L et al. Clinical and molecular epidemiology of haemophilus influenzae causing invasive disease in adult patients. PLoS One 2014; 9:e112711 [View Article][PubMed]
    [Google Scholar]
  109. Resman F, Ristovski M, Forsgren A, Kaijser B, Kronvall G et al. Increase of β-lactam-resistant invasive Haemophilus influenzae in Sweden, 1997 to 2010. Antimicrob Agents Chemother 2012; 56:4408–4415 [View Article][PubMed]
    [Google Scholar]
  110. Lâm TT, Claus H, Elias J, Frosch M, Vogel U. Ampicillin resistance of invasive Haemophilus influenzae isolates in Germany 2009–2012. Int J Med Microbiol 2015; 305:748–755 [View Article][PubMed]
    [Google Scholar]
  111. Skoczyńska A, Kadłubowski M, Waśko I, Fiett J, Hryniewicz W. Resistance patterns of selected respiratory tract pathogens in Poland. Clin Microbiol Infect 2007; 13:377–383 [View Article][PubMed]
    [Google Scholar]
  112. Kiedrowska M, Kuch A, Żabicka D, Waśko I, Ronkiewicz P et al. β-Lactam resistance among Haemophilus influenzae isolates in Poland. J Glob Antimicrob Resist 2017; 11:161–166 [View Article][PubMed]
    [Google Scholar]
  113. Hasegawa K, Yamamoto K, Chiba N, Kobayashi R, Nagai K et al. Diversity of ampicillin-resistance genes in Haemophilus influenzae in Japan and the United States. Microb Drug Resist 2003; 9:39–46 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/mgen/10.1099/mgen.0.000214
Loading
/content/journal/mgen/10.1099/mgen.0.000214
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error