1887

Abstract

A brown species was isolated from a soil sample collected in Java, Indonesia. It has three physiological types of light-absorbing compounds: the photosynthetic pigments (chlorophyll , carotenoids, phycocyanin, phycoerythrin and allophycocyanin), a brown pigment(s) and three UV-absorbing compounds. The organism undergoes complementary chromatic adaptation by varying its phycobilin content. It is resistant to photobleaching at high intensities of white light, and also to UV-C radiation, under which conditions a green-coloured species (ATCC 27895) was killed. Synthesis of the brown pigment and UV-absorbing compounds was not observed at low oxygen levels. A brown pigment was released suddenly from cells during exponential growth, resulting in a deep brown-coloured medium. In addition, the absorption spectrum of the medium after pigment release had maxima in the UV region, at 256 nm, 314 nm and 400 nm. The appearance of the UV-absorbing compounds coincided with the brown pigment release and with the disappearance from the vegetative cells of peripheral granules. The species reduced acetylene, a measure of nitrogen fixation, in both the light and the dark periods when grown on a 12/12 h light/dark cycle. On a 4/20 h light/dark cycle fixation occurred predominantly in the light period. When grown on this restricted light regime, or at very low light intensity, the cells did not produce the brown pigment or the UV-absorbing compounds.

Loading

Article metrics loading...

/content/journal/micro/10.1099/13500872-140-11-3183
1994-11-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/140/11/mic-140-11-3183.html?itemId=/content/journal/micro/10.1099/13500872-140-11-3183&mimeType=html&fmt=ahah

References

  1. Allen M.B., Arnon D. I. 1955; Studies on nitrogen-fixing blue-green alga Growth e. I. nitrogen fixation by Anabaena cilindrica Lemm.. Plant Physiol 30:366–372
    [Google Scholar]
  2. Allen M.M., Smith A. J. 1969; Nitrogen chlorosis in blue- green algae.. Arch Mikrobiol 69:114–120
    [Google Scholar]
  3. Barabás K., Laczkó I. 1985; Characterization of the photosynthetic electron transport chain in normal and photo-bleached Anabaena cylindrica by flash spectroscopy.. J Bioenerg Biomembr 17:123–133
    [Google Scholar]
  4. Boresch K. 1922; Die komplementäre chromatische Adaptation.. Arch Protistenk 44:1–70
    [Google Scholar]
  5. Carr N.G. 1988; Nitrogen reserves and dynamic reservoirs in cyanobacteria. In Biochemistry of the Algae and Cyanobacteria (Anna Proc Phytochem Soc Ear) pp. 13–21 Edited by Rogers L. T., Gallon J. R. . Oxford: Clarendon Press;
    [Google Scholar]
  6. Carr N.G., Whitton B. A. 1982; Interactions of cyanobacteria with light. In The Biology of Cyanobacteria (Bot Monogr) pp. 9–45 Edited by Carr N. G., Whitton B. A. . Oxford: Blackwell Scientific Publications;
    [Google Scholar]
  7. de Chazal N.M., Smaglinski S., Smith G. D. 1992; Methods involving light variation for isolation of cyanobacteria : characterization of isolates from central Australia. Appl Environ Microbiol 58:3561–3566
    [Google Scholar]
  8. Daday A., Platz R. A., Smith G. D. 1977; Anaerobic and aerobic hydrogen gas formation by the blue-green alga Anabaena cylindrica. Appl Environ Microbiol 34:478–483
    [Google Scholar]
  9. Daday A., Mackerras A. H., Smith G. D. 1988; A role for nickel in cyanobacterial nitrogen fixation and growth via cyanophycin metabolism. J Gen Microbiol 134:2659–2663
    [Google Scholar]
  10. Donkor V., Häder V., Donat P. 1991; Effects of solar and ultraviolet radiation on motility, photomovement and pigmentation in filamentous, gliding cyanobacteria.. FEMS Microbiol Ecol 86:159–168
    [Google Scholar]
  11. Dunlap W.C., Chalker B. E. 1986; Identification and quantitation of near-u.v. absorbing compounds (SW-320) in a hermatypic scleractinian.. Coral Reefs 5:155–159
    [Google Scholar]
  12. Dunlap W. C., Williams D.M.B, Chalker B. E., Banaszak A. T. 1989; Biochemical photoadaptation in vision: u.v.-absorbing pigments in fish eye tissues.. Comp Biochem Physiol 93B:601–607
    [Google Scholar]
  13. Engelmann T.W. 1902; Ueber experimentelle Erzeugung zweckmässiger Aenderungen der Färbung pflanzlicher Chromo- phylle durch farbiges Licht.. Arch Anat Physiol Abstr 333–335
    [Google Scholar]
  14. Fogg G. E., Stewart P. W. D., Fay P., Walsby A. E. 1973 The Blue-Green Algae. London & New York: Academic Press;
  15. Gantt E. 1981; Phycobilisomes.. Annu Rev Plant Physiol 32:327–347
    [Google Scholar]
  16. Garcia-Pichel F., Castenholz R. W. 1991; Characterization and implications of scytonemin, a cyanobacterial sheath pigment. J Phycol 27:395–409
    [Google Scholar]
  17. Garcia-Pichel F., Castenholz R. W. 1993; Occurrence of u.v.- absorbing, mycosporine-like compounds among cyanobacterial isolates and an estimate of their screening capacity. Appl Environ Microbiol 59:163–169
    [Google Scholar]
  18. Garcia-Pichel F., Sherry N. D., Castenholz R. W. 1992; Evidence for an ultraviolet sunscreen role of the extracellular pigment scytonemin in the terrestrial cyanobacterium Chlorogloepsis sp.. Photochem Photobiol 56:17–23
    [Google Scholar]
  19. Garcia-Pichel F., Wingard C. E., Castenholz R. W. 1993; Evidence regarding the u.v.-sunscreen role of a mycosporine-like compound in the cyanobacterium Gloeocapsa sp. Appl Environ Microbiol 59:170–176
    [Google Scholar]
  20. Heathcote P., Wyman M., Carr N. G., Beddard G. S. 1992; Partial uncoupling of energy transfer from phycoerythrin in the marine cyanobacterium Synechococcus sp. WH7803.. Biochim Biophys Acta 1099:267–270
    [Google Scholar]
  21. Khamees H. S., Gallon J. R., Chaplin A. E. 1987; The pattern of acetylene reduction by cyanobacteria grown under alternating light and darkness. Br Phycol J 22:55–60
    [Google Scholar]
  22. Laczkó I., Barabás K. 1981; Hydrogen evolution by photobleached Anabaena cylindrica. Planta 153:312–316
    [Google Scholar]
  23. Lambert G.R., Smith G. D. 1980; Hydrogen metabolism by filamentous cyanobacteria.. Arch Biochem Biophys 205:36–50
    [Google Scholar]
  24. Mallette M.F. 1969; Evaluation of growth by physical and chemical means. Methods Microbiol 1:521–566
    [Google Scholar]
  25. Matsunaga T., Burgess J. G., Yamada N., Komatsu K., Yoshida S., Wachi Y. 1993; An ultraviolet (uv-a) absorbing biopterin glucoside from the marine planktonic cyanobacterium Oscillatoria sp.. Appl Microbiol Biotechnol 39:250–253
    [Google Scholar]
  26. Rippka R., Deruelles J., Waterbury J. B., Herdman M., Stanier R. Y. 1979; Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61
    [Google Scholar]
  27. Sarker S.K., Haworth R. E. 1976; Specificity of the vanillin test for flavonols. J Agrie Food Chetn 24:317–320
    [Google Scholar]
  28. Scherer S., Chen T. W., Böger P. 1988; A new uv-a/b protecting pigment in the terrestrial cyanobacterium Nostoc commune.. Plant Physiol 88:1055–1057
    [Google Scholar]
  29. Shibata K. 1969; Pigments and a uv-absorbing substance in corals and a blue-green alga living in the barrier reef.. Plant Cell Physiol 10:325–335
    [Google Scholar]
  30. Smith R. C., Prézelin B. B., Baker K. S., Bidigare R. R., Boucher N. P., Coley T., Karentz D., MacIntyre S., Matlick H. A., Menzies D., Ondrusek M., Wan Z., Waters K. J. 1992; Ozone depletion : ultraviolet radiation and phytoplankton biology in Antarctic waters. Science 255:952–959
    [Google Scholar]
  31. Tandeau de Marsac N. T., Prézelin B. B. 1977; Occurrence and nature of chromatic adaptation in cyanobacteria. J Bacteriol 130:82–91
    [Google Scholar]
  32. Wyman M., Fay P. 1986a; Underwater light climate and the growth and pigmentation of planktonic blue-green algae (cyanobacteria I. The influence of light quantity.. Proc R Soc Lon Ser B Biol Sci 227:367–380
    [Google Scholar]
  33. Wyman M., Fay P. 1986b; Underwater light climate and the growth and pigmentation of blue-green algae (cyanobacteria II. The influence of light quality. Proc R Soc Lon Ser B Biol Sci 277:381–393
    [Google Scholar]
  34. Wyman M., Gregory F., Carr N. G. 1985; Novel role for phycoerythrin in a marine cyanobacterium, Synechococcus strain DC2.. Science 230:818–820
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/13500872-140-11-3183
Loading
/content/journal/micro/10.1099/13500872-140-11-3183
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error