1887

Abstract

SdhE is required for the flavinylation and activation of succinate dehydrogenase and fumarate reductase (FRD). In addition, SdhE is conserved in proteobacteria (α, β and γ) and eukaryotes. Although the function of this recently characterized family of proteins has been determined, almost nothing is known about how their genes are regulated. Here, the RsmA (CsrA) and RsmC (HexY) post-transcriptional and post-translational regulators have been identified and shown to repress expression in sp. ATCC 39006. Conversely, the flagella master regulator complex, FlhDC, activated transcription. To investigate the hierarchy of control, we developed a novel approach that utilized endogenous CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR associated) genome-editing by a type I-F system to generate a chromosomal point mutation in . Mutation of alleviated the ability of RsmC to repress expression, whereas RsmA acted in both an FlhDC-dependent and -independent manner to inhibit . Mutation of or , or overexpression of FlhDC, led to increased prodigiosin, biosurfactant, swimming and swarming. Consistent with the modulation of by motility regulators, we have demonstrated that SdhE and FRD are required for maximal flagella-dependent swimming. Together, these results demonstrate that regulators of both metabolism and motility (RsmA, RsmC and FlhDC) control the transcription of the operon.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000283
2016-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/6/1047.html?itemId=/content/journal/micro/10.1099/mic.0.000283&mimeType=html&fmt=ahah

References

  1. Almendros C., Guzmán N. M., Díez-Villaseñor C., García-Martínez J., Mojica F. J. 2012; Target motifs affecting natural immunity by a constitutive CRISPR-Cas system in Escherichia coli . PLoS One 7:e50797 [View Article][PubMed]
    [Google Scholar]
  2. Blaut M., Whittaker K., Valdovinos A., Ackrell B. A., Gunsalus R. P., Cecchini G. 1989; Fumarate reductase mutants of Escherichia coli that lack covalently bound flavin. J Biol Chem 264:13599–13604[PubMed]
    [Google Scholar]
  3. Bowden S. D., Hale N., Chung J. C., Hodgkinson J. T., Spring D. R., Welch M. 2013; Surface swarming motility by Pectobacterium atrosepticum is a latent phenotype that requires O antigen and is regulated by quorum sensing. Microbiology 159:2375–2385 [View Article][PubMed]
    [Google Scholar]
  4. Bycroft B. W., Maslen C., Box S. J., Brown A., Tyler J. W. 1987; The isolation and characterisation of (3R,5R)- and (3S,5R)-carbapenam-3-carboxylic acid from Serratia and Erwinia species and their putative biosynthetic role. J Chem Soc Chem Commun 21:1623–1625 [CrossRef]
    [Google Scholar]
  5. Cecchini G., Schröder I., Gunsalus R. P., Maklashina E. 2002; Succinate dehydrogenase and fumarate reductase from Escherichia coli . Biochim Biophys Acta 1553:140–157[PubMed] [CrossRef]
    [Google Scholar]
  6. Chatterjee A., Cui Y., Chatterjee A. K. 2009; RsmC of Erwinia carotovora subsp. carotovora negatively controls motility, extracellular protein production, and virulence by binding FlhD and modulating transcriptional activity of the master regulator, FlhDC. J Bacteriol 191:4582–4593 [View Article][PubMed]
    [Google Scholar]
  7. Chavez R. G., Alvarez A. F., Romeo T., Georgellis D. 2010; The physiological stimulus for the BarA sensor kinase. J Bacteriol 192:2009–2012 [View Article][PubMed]
    [Google Scholar]
  8. Chevance F. F., Hughes K. T. 2008; Coordinating assembly of a bacterial macromolecular machine. Nat Rev Microbiol 6:455–465 [View Article][PubMed]
    [Google Scholar]
  9. Cobb R. E., Wang Y., Zhao H. 2015; High-efficiency multiplex genome editing of Streptomyces species using an engineered CRISPR/Cas system. ACS Synth Biol 4:723–728 [View Article][PubMed]
    [Google Scholar]
  10. Cohen-Ben-Lulu G. N., Francis N. R., Shimoni E., Noy D., Davidov Y., Prasad K., Sagi Y., Cecchini G., Johnstone R. M. et al. 2008; The bacterial flagellar switch complex is getting more complex. EMBO J 27:1134–1144 [View Article][PubMed]
    [Google Scholar]
  11. Cui Y., Mukherjee A., Dumenyo C. K., Liu Y., Chatterjee A. K. 1999; rsmC of the soft-rotting bacterium Erwinia carotovora subsp. carotovora negatively controls extracellular enzyme and harpin (Ecc) production and virulence by modulating levels of regulatory RNA (rsmB) and RNA-binding protein (RsmA). J Bacteriol 181:6042–6052[PubMed]
    [Google Scholar]
  12. Cui Y., Chatterjee A., Yang H., Chatterjee A. K. 2008; Regulatory network controlling extracellular proteins in Erwinia carotovora subsp. carotovora: FlhDC, the master regulator of flagellar genes, activates rsmB regulatory RNA production by affecting gacA and hexA (lrhA) expression. J Bacteriol 190:4610–4623 [View Article][PubMed]
    [Google Scholar]
  13. Dy R. L., Pitman A. R., Fineran P. C. 2013; Chromosomal targeting by CRISPR-Cas systems can contribute to genome plasticity in bacteria. Mob Genet Elements 3:e26831 [View Article][PubMed]
    [Google Scholar]
  14. Evans T. J., Crow M. A., Williamson N. R., Orme W., Thomson N. R., Komitopoulou E., Salmond G. P. 2010; Characterization of a broad-host-range flagellum-dependent phage that mediates high-efficiency generalized transduction in, and between, Serratia and Pantoea . Microbiology 156:240–247 [View Article][PubMed]
    [Google Scholar]
  15. Fineran P. C., Dy R. L. 2014; Gene regulation by engineered CRISPR-Cas systems. Curr Opin Microbiol 18:83–89 [View Article][PubMed]
    [Google Scholar]
  16. Fineran P. C., Everson L., Slater H., Salmond G. P. 2005a; A GntR family transcriptional regulator (PigT) controls gluconate-mediated repression and defines a new, independent pathway for regulation of the tripyrrole antibiotic, prodigiosin, in Serratia . Microbiology 151:3833–3845 [View Article]
    [Google Scholar]
  17. Fineran P. C., Slater H., Everson L., Hughes K., Salmond G. P. C. 2005b; Biosynthesis of tripyrrole and β-lactam secondary metabolites in Serratia: integration of quorum sensing with multiple new regulatory components in the control of prodigiosin and carbapenem antibiotic production. Mol Microbiol 56:1495–1517 [CrossRef]
    [Google Scholar]
  18. Fineran P. C., Williamson N. R., Lilley K. S., Salmond G. P. 2007; Virulence and prodigiosin antibiotic biosynthesis in Serratia are regulated pleiotropically by the GGDEF/EAL domain protein, Pigx. J Bacteriol 189:7653–7662 [View Article][PubMed]
    [Google Scholar]
  19. Fineran P. C., Iglesias Cans M. C., Ramsay J. P., Wilf N. M., Cossyleon D., McNeil M. B., Williamson N. R., Monson R. E., Becher S. A. et al. 2013; Draft genome sequence of Serratia sp. strain ATCC 39006, a model bacterium for analysis of the biosynthesis and regulation of prodigiosin, a carbapenem, and gas vesicles. Genome Announc 1:e0103913 [View Article][PubMed]
    [Google Scholar]
  20. Fineran P. C., Gerritzen M. J., Suárez-Diez M., Künne T., Boekhorst J., van Hijum S. A., Staals R. H., Brouns S. J. 2014; Degenerate target sites mediate rapid primed CRISPR adaptation. Proc Natl Acad Sci U S A 111:E1629E1638 [View Article][PubMed]
    [Google Scholar]
  21. Gristwood T., Fineran P. C., Everson L., Williamson N. R., Salmond G. P. 2009; The PhoBR two-component system regulates antibiotic biosynthesis in Serratia in response to phosphate. BMC Microbiol 9:112 [View Article][PubMed]
    [Google Scholar]
  22. Hao H. X., Khalimonchuk O., Schraders M., Dephoure N., Bayley J. P., Kunst H., Devilee P., Cremers C. W., Schiffman J. D. et al. 2009; SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma. Science 325:1139–1142 [View Article][PubMed]
    [Google Scholar]
  23. Huang S., Taylor N. L., Ströher E., Fenske R., Millar A. H. 2013; Succinate dehydrogenase assembly factor 2 is needed for assembly and activity of mitochondrial complex II and for normal root elongation in Arabidopsis . Plant J 73:429–491 [View Article][PubMed]
    [Google Scholar]
  24. Iverson T. M., Luna-Chavez C., Cecchini G., Rees D. C. 1999; Structure of the Escherichia coli fumarate reductase respiratory complex. Science 284:1961–1966 [View Article][PubMed]
    [Google Scholar]
  25. Jacobs M. A., Alwood A., Thaipisuttikul I., Spencer D., Haugen E., Ernst S., Will O., Kaul R., Raymond C. et al. 2003; Comprehensive transposon mutant library of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 100:14339–14344 [View Article][PubMed]
    [Google Scholar]
  26. Jarrell K. F., McBride M. J. 2008; The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol 6:466–476 [View Article][PubMed]
    [Google Scholar]
  27. Jiang W., Bikard D., Cox D., Zhang F., Marraffini L. A. 2013; RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol 31:233–239 [View Article][PubMed]
    [Google Scholar]
  28. Kaniga K., Delor I., Cornelis G. R. 1991; A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica . Gene 109:137–141 [View Article][PubMed]
    [Google Scholar]
  29. Kim H. J., Winge D. R. 2013; Emerging concepts in the flavinylation of succinate dehydrogenase. Biochim Biophys Acta 1827:627–636 [View Article][PubMed]
    [Google Scholar]
  30. Li Y., Lin Z., Huang C., Zhang Y., Wang Z., Tang Y. J., Chen T., Zhao X. 2015; Metabolic engineering of Escherichia coli using CRISPR-Cas9 mediated genome editing. Metab Eng 31:13–21 [View Article][PubMed]
    [Google Scholar]
  31. Maklashina E., Cecchini G., Dikanov S. A. 2013; Defining a direction: electron transfer and catalysis in Escherichia coli complex II enzymes. Biochim Biophys Acta 1827:668–678 [View Article][PubMed]
    [Google Scholar]
  32. McNeil M. B., Fineran P. C. 2013; Prokaryotic assembly factors for the attachment of flavin to complex II. Biochim Biophys Acta 1827:637–647 [View Article][PubMed]
    [Google Scholar]
  33. McNeil M. B., Clulow J. S., Wilf N. M., Salmond G. P., Fineran P. C. 2012; SdhE is a conserved protein required for flavinylation of succinate dehydrogenase in bacteria. J Biol Chem 287:18418–18428 [View Article][PubMed]
    [Google Scholar]
  34. McNeil M. B., Iglesias-Cans M. C., Clulow J. S., Fineran P. C. 2013; YgfX (CptA) is a multimeric membrane protein that interacts with the succinate dehydrogenase assembly factor SdhE (YgfY). Microbiology 159:1352–1365 [View Article][PubMed]
    [Google Scholar]
  35. McNeil M. B., Hampton H. G., Hards K. J., Watson B. N., Cook G. M., Fineran P. C. 2014; The succinate dehydrogenase assembly factor, SdhE, is required for the flavinylation and activation of fumarate reductase in bacteria. FEBS Lett 588:414–421 [View Article][PubMed]
    [Google Scholar]
  36. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  37. Oh J. H., van Pijkeren J. P. 2014; CRISPR-Cas9-assisted recombineering in Lactobacillus reuteri . Nucleic Acids Res 42:e131 [View Article][PubMed]
    [Google Scholar]
  38. Paruchuri D. K., Harshey R. M. 1987; Flagellar variation in Serratia marcescens is associated with color variation. J Bacteriol 169:61–65[PubMed]
    [Google Scholar]
  39. Przybilski R., Richter C., Gristwood T., Clulow J. S., Vercoe R. B., Fineran P. C. 2011; Csy4 is responsible for CRISPR RNA processing in Pectobacterium atrosepticum . RNA Biol 8:517–528[PubMed] [CrossRef]
    [Google Scholar]
  40. Ramsay J. P., Williamson N. R., Spring D. R., Salmond G. P. 2011; A quorum-sensing molecule acts as a morphogen controlling gas vesicle organelle biogenesis and adaptive flotation in an enterobacterium. Proc Natl Acad Sci U S A 108:14932–14937 [View Article][PubMed]
    [Google Scholar]
  41. Richter C., Chang J. T., Fineran P. C. 2012a; Function and regulation of clustered regularly interspaced short palindromic repeats (CRISPR) / CRISPR associated (Cas) systems. Viruses 4:2291–2311 [View Article]
    [Google Scholar]
  42. Richter C., Gristwood T., Clulow J. S., Fineran P. C. 2012b; In vivo protein interactions and complex formation in the Pectobacterium atrosepticum subtype I-F CRISPR/Cas system. PLoS One 7:e49549 [View Article]
    [Google Scholar]
  43. Romeo T., Vakulskas C. A., Babitzke P. 2013; Post-transcriptional regulation on a global scale: form and function of Csr/Rsm systems. Environ Microbiol 15:313–324 [View Article][PubMed]
    [Google Scholar]
  44. Selle K., Barrangou R. 2015; Harnessing CRISPR-Cas systems for bacterial genome editing. Trends Microbiol 23:225–232 [View Article][PubMed]
    [Google Scholar]
  45. Shih Y. L., Harris S. J., Borner G., Rivet M. M., Salmond G. P. 1999; The hexY genes of Erwinia carotovora ssp. carotovora and ssp. atroseptica encode novel proteins that regulate virulence and motility co-ordinately. Environ Microbiol 1:535–547[PubMed] [CrossRef]
    [Google Scholar]
  46. Slater H., Crow M., Everson L., Salmond G. P. 2003; Phosphate availability regulates biosynthesis of two antibiotics, prodigiosin and carbapenem, in Serratia via both quorum-sensing-dependent and -independent pathways. Mol Microbiol 47:303–320[PubMed] [CrossRef]
    [Google Scholar]
  47. Takeuchi K., Kiefer P., Reimmann C., Keel C., Dubuis C., Rolli J., Vorholt J. A., Haas D. 2009; Small RNA-dependent expression of secondary metabolism is controlled by Krebs cycle function in Pseudomonas fluorescens . J Biol Chem 284:34976–34985 [View Article][PubMed]
    [Google Scholar]
  48. Thomson N. R., Crow M. A., McGowan S. J., Cox A., Salmond G. P. 2000; Biosynthesis of carbapenem antibiotic and prodigiosin pigment in Serratia is under quorum sensing control. Mol Microbiol 36:539–556[PubMed] [CrossRef]
    [Google Scholar]
  49. Tong Y., Charusanti P., Zhang L., Weber T., Lee S. Y. 2015; CRISPR-Cas9 based engineering of actinomycetal genomes. ACS Synth Biol 4:1020–1029 [View Article][PubMed]
    [Google Scholar]
  50. Vakulskas C. A., Potts A. H., Babitzke P., Ahmer B. M., Romeo T. 2015; Regulation of bacterial virulence by Csr (Rsm) systems. Microbiol Mol Biol Rev 79:193–224 [View Article][PubMed]
    [Google Scholar]
  51. Vercoe R. B., Chang J. T., Dy R. L., Taylor C., Gristwood T., Clulow J. S., Richter C., Przybilski R., Pitman A. R. et al. 2013; Cytotoxic chromosomal targeting by CRISPR/Cas systems can reshape bacterial genomes and expel or remodel pathogenicity islands. PLoS Genet 9:e1003454 [View Article][PubMed]
    [Google Scholar]
  52. Wiedenheft B., van Duijn E., Bultema J. B., Bultema J., Waghmare S. P., Waghmare S., Zhou K., Barendregt A., Westphal W. et al. 2011; RNA-guided complex from a bacterial immune system enhances target recognition through seed sequence interactions. Proc Natl Acad Sci U S A 108:10092–10097 [View Article][PubMed]
    [Google Scholar]
  53. Wilf N. M., Salmond G. P. 2012; The stationary phase sigma factor, RpoS, regulates the production of a carbapenem antibiotic, a bioactive prodigiosin and virulence in the enterobacterial pathogen Serratia sp. ATCC 39006. Microbiology 158:648–658 [View Article][PubMed]
    [Google Scholar]
  54. Wilf N. M., Reid A. J., Ramsay J. P., Williamson N. R., Croucher N. J., Gatto L., Hester S. S., Goulding D., Barquist L. et al. 2013; RNA-seq reveals the RNA binding proteins, Hfq and RsmA, play various roles in virulence, antibiotic production and genomic flux in Serratia sp. ATCC 39006. BMC Genomics 14:822 [View Article][PubMed]
    [Google Scholar]
  55. Williamson N. R., Fineran P. C., Leeper F. J., Salmond G. P. 2006; The biosynthesis and regulation of bacterial prodiginines. Nat Rev Microbiol 4:887–899 [View Article][PubMed]
    [Google Scholar]
  56. Williamson N. R., Fineran P. C., Gristwood T., Chawrai S. R., Leeper F. J., Salmond G. P. 2007; Anticancer and immunosuppressive properties of bacterial prodiginines. Future Microbiol 2:605–618 [View Article][PubMed]
    [Google Scholar]
  57. Williamson N. R., Fineran P. C., Ogawa W., Woodley L. R., Salmond G. P. 2008; Integrated regulation involving quorum sensing, a two-component system, a GGDEF/EAL domain protein and a post-transcriptional regulator controls swarming and RhlA-dependent surfactant biosynthesis in Serratia . Environ Microbiol 10:1202–1217 [View Article][PubMed]
    [Google Scholar]
  58. Yankovskaya V., Horsefield R., Törnroth S., Luna-Chavez C., Miyoshi H., Léger C., Byrne B., Cecchini G., Iwata S. 2003; Architecture of succinate dehydrogenase and reactive oxygen species generation. Science 299:700–704 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000283
Loading
/content/journal/micro/10.1099/mic.0.000283
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error