1887

Abstract

spp. are currently considered to be emerging pathogens that can code for a carbapenemase in their chromosome. Complete genome analysis of the clinical isolate sp. Sh95 revealed that this strain is a novel species, which shares a lineage with marine isolates. Characterization of its resistome showed that it codes for genes and We propose that sp. Sh95 acts as reservoir of . Moreover, analysis of mobilome showed that it contains a novel integrative and conjugative element (ICE), named ICE. Comparative analysis between the close relatives ICEPO1 from sp. W3-18-1 and ICE SXT from showed that ICEencompassed two new regions, a type III restriction modification system and a multidrug resistance integron. The integron platform contained a novel arrangement formed by gene cassettes and and a class C-attC group II intron. Furthermore, insertion of ICE occurred at a unique target site, which correlated with the presence of a different module. Mobility of ICE was assessed and demonstrated its ability to self-transfer with high efficiency to different species of bacteria. Our results show that ICE is a self-transmissible, mobile element, which can contribute to the dissemination of antimicrobial resistance; this is clearly a threat when natural bacteria from water ecosystems, such as , act as vectors in its propagation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000310
2016-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/162/8/1335.html?itemId=/content/journal/micro/10.1099/mic.0.000310&mimeType=html&fmt=ahah

References

  1. Ananth A. L., Nassiri N., Pamoukian V. N. 2014; Shewanella algae: a rare cause of necrotizing fasciitis. Surg Infect 15:336–338 [View Article][PubMed]
    [Google Scholar]
  2. Aziz R. K., Bartels D., Best A. A., DeJongh M., Disz T., Edwards R. A., Formsma K., Gerdes S., Glass E. M. et al. 2008; The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75 [View Article][PubMed]
    [Google Scholar]
  3. Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., Lesin V. M., Nikolenko S. I., Pham S. et al. 2012; SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477 [View Article][PubMed]
    [Google Scholar]
  4. Beaber J. W., Hochhut B., Waldor M. K. 2002; Genomic and functional analyses of SXT, an integrating antibiotic resistance gene transfer element derived from Vibrio cholerae. J Bacteriol 184:4259–4269 [View Article][PubMed]
    [Google Scholar]
  5. Bordeleau E., Brouillette E., Robichaud N., Burrus V. 2009; Beyond antibiotic resistance: integrating conjugative elements of the SXT/R391 family that encode novel diguanylate cyclases participate to c-di-GMP signalling in Vibrio cholerae. Environ Microbiol 12:510–523 [View Article][PubMed]
    [Google Scholar]
  6. Burrus V., Quezada-Calvillo R., Marrero J., Waldor M. K. 2006; SXT-related integrating conjugative element in New World Vibrio cholerae. Appl Environ Microbiol 72:3054–3057 [View Article][PubMed]
    [Google Scholar]
  7. Carraro N., Burrus V. 2014; Biology of three ICE families: SXT/R391, ICEBs1, and ICESt1/ICESt3. Microbiol Spectr 2:MDNA3-0008-2014 [View Article][PubMed]
    [Google Scholar]
  8. Carver T., Berriman M., Tivey A., Patel C., Böhme U., Barrell B. G., Parkhill J., Rajandream M. A. 2008; Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24:2672–2676 [View Article][PubMed]
    [Google Scholar]
  9. Centrón D., Roy P. H. 2002; Presence of a group II intron in a multiresistant Serratia marcescens strain that harbors three integrons and a novel gene fusion. Antimicrob Agents Chemother 46:1402–1409 [View Article][PubMed]
    [Google Scholar]
  10. Choi K. H., Schweizer H. P. 2006; Mini-Tn7 insertion in bacteria with single attTn7 sites: example Pseudomonas aeruginosa. Nat Protoc 1:153–161 [View Article][PubMed]
    [Google Scholar]
  11. Constant J., Chernev I., Gomez E. 2014; Shewanella putrefaciens infective endocarditis. Braz J Infect Dis 18:686–688 [View Article][PubMed]
    [Google Scholar]
  12. Contreras-Moreira B., Vinuesa P. 2013; GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 79:7696–7701 [View Article][PubMed]
    [Google Scholar]
  13. De Palmenaer D., Siguier P., Mahillon J. 2008; IS4 family goes genomic. BMC Evol Biol 8:18 [View Article][PubMed]
    [Google Scholar]
  14. Dey S., Bhattacharya D., Roy S., Nadgir S. D., Patil A., Kholkute S. D. 2015; Shewanella algae in acute gastroenteritis. Indian J Med Microbiol 33:172–175 [View Article][PubMed]
    [Google Scholar]
  15. Dhillon B. K., Laird M. R., Shay J. A., Winsor G. L., Lo R., Nizam F., Pereira S. K., Waglechner N., McArthur A. G. et al. 2015; IslandViewer 3: more flexible, interactive genomic island discovery, visualization and analysis. Nucleic Acids Res 43:W104–108 [View Article][PubMed]
    [Google Scholar]
  16. Drouin F., Mélançon J., Roy P. H. 2002; The IntI-like tyrosine recombinase of Shewanella oneidensis is active as an integron integrase. J Bacteriol 184:1811–1815 [View Article][PubMed]
    [Google Scholar]
  17. Fredrickson J. K., Romine M. F., Beliaev A. S., Auchtung J. M., Driscoll M. E., Gardner T. S., Nealson K. H., Osterman A. L., Pinchuk G. et al. 2008; Towards environmental systems biology of Shewanella. Nat Rev Microbiol 6:592–603 [View Article][PubMed]
    [Google Scholar]
  18. Garriss G., Waldor M. K., Burrus V. 2009; Mobile antibiotic resistance encoding elements promote their own diversity. PLoS Genet 5:e1000775 [View Article][PubMed]
    [Google Scholar]
  19. Garriss G., Poulin-Laprade D., Burrus V. 2013; DNA-damaging agents induce the RecA-independent homologous recombination functions of integrating conjugative elements of the SXT/R391 family. J Bacteriol 195:1991–2003 [View Article][PubMed]
    [Google Scholar]
  20. Goris J., Konstantinidis K. T., Klappenbach J. A., Coenye T., Vandamme P., Tiedje J. M. 2007; DNA-DNA hybridization values and their relationship to whole-genome sequence similarities. Int J Syst Evol Microbiol 57:81–91 [View Article][PubMed]
    [Google Scholar]
  21. Goyal R., Kaur N., Thakur R. 2011; Human soft tissue infection by the emerging pathogen Shewanella algae. J Infect Dev Ctries 5:310–312 [View Article][PubMed]
    [Google Scholar]
  22. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [View Article][PubMed]
    [Google Scholar]
  23. Guindon S., Dufayard J. F., Lefort V., Anisimova M., Hordijk W., Gascuel O. 2010; New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321 [View Article][PubMed]
    [Google Scholar]
  24. Gupta S. K., Padmanabhan B. R., Diene S. M., Lopez-Rojas R., Kempf M., Landraud L., Rolain J. M. 2014; ARG-ANNOT, a new bioinformatic tool to discover antibiotic resistance genes in bacterial genomes. Antimicrob Agents Chemother 58:212–220 [View Article][PubMed]
    [Google Scholar]
  25. Hall R. M. 2012; Integrons and gene cassettes: hotspots of diversity in bacterial genomes. Ann N Y Acad Sci 1267:71–78 [View Article][PubMed]
    [Google Scholar]
  26. Hochhut B., Waldor M. K. 1999; Site-specific integration of the conjugal Vibrio cholerae SXT element into prfC. Mol Microbiol 32:99–110 [View Article][PubMed]
    [Google Scholar]
  27. Hochhut B., Lotfi Y., Mazel D., Faruque S. M., Woodgate R., Waldor M. K. 2001; Molecular analysis of antibiotic resistance gene clusters in vibrio cholerae O139 and O1 SXT constins. Antimicrob Agents Chemother 45:2991–3000 [View Article][PubMed]
    [Google Scholar]
  28. Holt H. M., Gahrn-Hansen B., Bruun B. 2005; Shewanella algae and Shewanella putrefaciens: clinical and microbiological characteristics. Clin Microbiol Infect 11:347–352 [View Article][PubMed]
    [Google Scholar]
  29. Kobayashi I. 2001; Behavior of restriction-modification systems as selfish mobile elements and their impact on genome evolution. Nucleic Acids Res 29:3742–3756 [View Article][PubMed]
    [Google Scholar]
  30. Lambowitz A. M., Zimmerly S. 2011; Group II introns: mobile ribozymes that invade DNA. Cold Spring Harb Perspect Biol 3:a003616 [View Article][PubMed]
    [Google Scholar]
  31. Li L., Stoeckert C. J., Roos D. S. 2003; OrthoMCL: identification of ortholog groups for eukaryotic genomes. Genome Res 13:2178–2189 [View Article][PubMed]
    [Google Scholar]
  32. Marrero J., Waldor M. K. 2007; Determinants of entry exclusion within Eex and TraG are cytoplasmic. J Bacteriol 189:6469–6473 [View Article][PubMed]
    [Google Scholar]
  33. Pembroke J. T., Piterina A. V. 2006; A novel ICE in the genome of Shewanella putrefaciens W3-18-1: comparison with the SXT/R391 ICE-like elements. FEMS Microbiol Lett 264:80–88 [View Article][PubMed]
    [Google Scholar]
  34. Poirel L., Pham J. N., Cabanne L., Gatus B. J., Bell S. M., Nordmann P. 2004; Carbapenem-hydrolysing metallo-beta-lactamases from Klebsiella pneumoniae and Escherichia coli isolated in Australia. Pathology 36:366–367 [View Article][PubMed]
    [Google Scholar]
  35. Potron A., Poirel L., Rondinaud E., Nordmann P. 2013; Intercontinental spread of OXA-48 beta-lactamase-producing Enterobacteriaceae over a 11-year period, 2001 to 2011. Euro Surveill 18:20549 [View Article]
    [Google Scholar]
  36. Poulin-Laprade D., Burrus V. 2015; A λ Cro-like repressor is essential for the induction of conjugative transfer of SXT/R391 elements in response to DNA damage. J Bacteriol 197:3822–3833 [View Article][PubMed]
    [Google Scholar]
  37. Quiroga C., Roy P. H., Centrón D. 2008; The S.ma.I2 class C group II intron inserts at integron attC sites. Microbiology 154:1341–1353 [View Article][PubMed]
    [Google Scholar]
  38. Quiroga C., Centrón D. 2009; Using genomic data to determine the diversity and distribution of target site motifs recognized by class C-attC group II introns. J Mol Evol 68:539–549 [View Article][PubMed]
    [Google Scholar]
  39. Raghavendra N. K., Bheemanaik S., Rao D. N. 2012; Mechanistic insights into type III restriction enzymes. Front Biosci 17:1094–1107 [View Article]
    [Google Scholar]
  40. Ramírez M. S., Merkier A. K., Almuzara M., Vay C., Centrón D., Merkier A. K. 2010; Reservoir of antimicrobial resistance determinants associated with horizontal gene transfer in clinical isolates of the genus Shewanella. Antimicrob Agents Chemother 54:4516–4517 [View Article][PubMed]
    [Google Scholar]
  41. Romine M. F., Carlson T. S., Norbeck A. D., McCue L. A., Lipton M. S. 2008; Identification of mobile elements and pseudogenes in the Shewanella oneidensis MR-1 genome. Appl Environ Microbiol 74:3257–3265 [View Article][PubMed]
    [Google Scholar]
  42. Sekine Y., Eisaki N., Ohtsubo E. 1994; Translational control in production of transposase and in transposition of insertion sequence IS3. J Mol Biol 235:1406–1420 [View Article][PubMed]
    [Google Scholar]
  43. Sharma K. K., Kalawat U. 2010; Emerging infections: shewanella - a series of five cases. J Lab Physicians 2:61–65 [View Article][PubMed]
    [Google Scholar]
  44. Sievers F., Wilm A., Dineen D., Gibson T. J., Karplus K., Li W., Lopez R., McWilliam H., Remmert M. et al. 2011; Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol 7,:539 [View Article][PubMed]
    [Google Scholar]
  45. Siguier P., Perochon J., Lestrade L., Mahillon J., Chandler M. 2006; ISfinder: the reference centre for bacterial insertion sequences. Nucleic Acids Res 34:D32–D36 (Database issue) [View Article][PubMed]
    [Google Scholar]
  46. Srinivas J., Pillai M., Vinod V., Dinesh R. K. 2015; Skin and soft tissue infections due to Shewanella algae - an emerging pathogen. J Clin Diagn Res 9:16–20 DC
    [Google Scholar]
  47. Sukumaran J., Holder M. T. 2010; DendroPy: a Python library for phylogenetic computing. Bioinformatics 26:1569–1571 [View Article][PubMed]
    [Google Scholar]
  48. Tamura K., Stecher G., Peterson D., Filipski A., Kumar S. 2013; mega6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729 [View Article][PubMed]
    [Google Scholar]
  49. Taviani E., Spagnoletti M., Ceccarelli D., Haley B. J., Hasan N. A., Chen A., Colombo M. M., Huq A., Colwell R. R. 2012; Genomic analysis of ICEVchBan8: An atypical genetic element in Vibrio cholerae. FEBS Lett 586:1617–1621 [View Article][PubMed]
    [Google Scholar]
  50. Tsai M. S., You H. L., Tang Y. F., Liu J. W. 2008; Shewanella soft tissue infection: case report and literature review. Int J Infect Dis 12:e119124 [View Article][PubMed]
    [Google Scholar]
  51. Waldor M. K., Tschäpe H., Mekalanos J. J. 1996; A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J Bacteriol 178:4157–4165[PubMed]
    [Google Scholar]
  52. Wozniak R. A., Waldor M. K. 2009; A toxin-antitoxin system promotes the maintenance of an integrative conjugative element. PLoS Genet 5:e1000439 [View Article][PubMed]
    [Google Scholar]
  53. Wozniak R. A., Fouts D. E., Spagnoletti M., Colombo M. M., Ceccarelli D., Garriss G., Déry C., Burrus V., Waldor M. K. 2009; Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. PLoS Genet 5:e1000786 [View Article][PubMed]
    [Google Scholar]
  54. Yiallouros P., Mavri A., Attilakos A., Moustaki M., Leontsini F., Karpathios T. 2013; Shewanella putrefaciens bacteraemia associated with terminal ileitis. Paediatr Int Child Health 33:193–195 [View Article][PubMed]
    [Google Scholar]
  55. Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., Aarestrup F. M., Larsen M. V. 2012; Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644 [View Article][PubMed]
    [Google Scholar]
  56. Zhou Y., Liang Y., Lynch K. H., Dennis J. J., Wishart D. S. 2011; PHAST: a fast phage search tool. Nucleic Acids Res 39:W347–352 [View Article][PubMed]
    [Google Scholar]
  57. Zong Z. 2012; Discovery of bla(OXA-199), a chromosome-based bla(OXA-48)-like variant, in Shewanella xiamenensis. PLoS One 7:e48280 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000310
Loading
/content/journal/micro/10.1099/mic.0.000310
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error