1887

Abstract

SUMMARY

The polyamine spermidine and the diamine putrescine have been detected in coliphages T5 and ϕX174. Polyamines were identified by thin-layer chromatography and mass-spectrometry of dansyl derivatives, as well as by ion-exchange chromatography. In ϕX174 phages, polyamines were sufficient to neutralize 0.5% of DNA phosphates. The polyamine content of T5 phages depended on growth media and purification procedures, but at least 1% of DNA phosphates were neutralized by polyamines. After infection, an increase in cellular polyamine was noticed. This increase paralleled variations in ornithine decarboxylase activity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-26-3-287
1975-03-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/26/3/JV0260030287.html?itemId=/content/journal/jgv/10.1099/0022-1317-26-3-287&mimeType=html&fmt=ahah

References

  1. Ames B. N. 1966; Assay of inorganic phosphate, total phosphate and phosphatases. Methods in Enzymology 8:115–118
    [Google Scholar]
  2. Ames B. N., Dubin D. T. 1960; The role of polyamines in the neutralization of bacteriophage deoxyribonucleic acid. Journal of Biological Chemistry 235:769–775
    [Google Scholar]
  3. Ames B. N., Dubin D. T., Rosenthal S. M. 1958; Presence of polyamines in certain bacterial viruses. Science, New York 127:814–816
    [Google Scholar]
  4. Astrachan L., Miller J. F. 1973; Cadaverine in bacteriophage T4. Journal of Virology 11:792–798
    [Google Scholar]
  5. Bachrach U. 1973 In Function of Naturally Occurring Polyamine p. 211 New York and London: Academic Press;
    [Google Scholar]
  6. Bachrach U., Ben-Joseph M. 1971; Studies on ornithine decarboxylase activity in normal and T2-infected Escherichia coli. FEBS Letters 15:75–77
    [Google Scholar]
  7. Bachrach U., Friedmann A. 1971; Practical procedures for the purification of bacterial viruses. Applied Microbiology 22:706–715
    [Google Scholar]
  8. Bode V. C., Harrison D. P. 1973; Distinct effects of diamines, polyamines and magnesium ions on the stability of A phage heads. Biochemistry 12:3193–3196
    [Google Scholar]
  9. Bray G. A. 1960; A simple efficient liquid scintillator for counting aqueous solutions in a liquid scintillation counter. Analytical Biochemistry 1:279–285
    [Google Scholar]
  10. Burton K. 1955; A study of the conditions and mechanisms of the diphenylamine reaction for the colorimetric estimation of deoxyribonucleic acid. Biochemical Journal 62:315–323
    [Google Scholar]
  11. CoheN S. S. 1971 In Introduction to the Polyamines p. 179 Englewood Cliffs, New Jersey: Prentice Hall, Inc;
    [Google Scholar]
  12. Dion A. S., Cohen S. S. 1972; Polyamine stimulation of nucleic acid synthesis in an uninfected and phage-infected polyamine auxotroph of Escherichia coli K-12. Proceedings of the National Academy of Sciences of the United States of America 69:213–217
    [Google Scholar]
  13. Fukuma I., CoheN S. S. 1973; Polyamine synthesis and accumulation in Escherichia coli infected with bacteriophage R17. Journal of Virology 12:1259–1264
    [Google Scholar]
  14. Groman N. B. 1966; A simple method for concentrating bacteriophage ϕX174. Virology 30:577–578
    [Google Scholar]
  15. Harrison D. P., Brown D. T., Bode V. C. 1973; The lambda head-tail joining reaction: purification properties and structure of biological active heads and tails. Journal of Molecular Biology 79:437–449
    [Google Scholar]
  16. Lanni Y. T. 1961; Invasion of bacteriophage T5. III. Stages revealed by changes in susceptibility of early complexes to abortive infection. Virology 15:127–135
    [Google Scholar]
  17. Liquori A. M., Constantino L., Crescenzi V., Elia V., Giglio E., Puliti R., De Santis Savino M., Vita-Gliano V. 1967; Complexes between DNA and polyamines: a molecular model. Journal of Molecular Biology 24:113–122
    [Google Scholar]
  18. Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. 1951; Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193:265–275
    [Google Scholar]
  19. Schekman R., Wickner W., Westergaard O., Brutlag D., Geider K., Bertsch L. L., Kornberg A. 1972; Initiation of DNA synthesis: Synthesis of ϕX174 replicative form requires RNA synthesis resistant to rifampicin. Proceedings of the National Academy of Sciences of the United States of America 69:2691–2695
    [Google Scholar]
  20. Seiler N., Schneider H., Sonnenberg K. D. 1970; Massenspektrometrische Identifizerung von biogenen Aminen in Form ihrer I-Dimethylaminonaphthalin-5-sulfonyl-Derivate. Fresenius Zeitschrift für Analytische Chemie 252:127–136
    [Google Scholar]
  21. Seiler N., Wiechmann M. 1967a; Die Microbestimmung von Spermin und Spermidin als 1-Dimethyl-aminonaphthalin-5-sulfonsäure-Derivate. Zeitschrift für Physiologische Chemie 348:1285–1290
    [Google Scholar]
  22. Seiler N., Wiechmann M. 1967b; Zur Chromatographie einiger I-Dimethylaminonaphthalin-5-sulfonyl-Derivate auf Kieselgel O-Schichten. Journal of Chromatography 28:351–362
    [Google Scholar]
  23. Shalitin CH. 1968 Regulation of synthesis of protein and mRNA during development of T4 phage. In The Biochemistry of Virus Replication pp. 61–77 Edited by Laland S. G., Froholm L. O. New York and London: Academic Press;
    [Google Scholar]
  24. Sinsheimer R. L. 1966 ϕX174 DNA. In Procedures in Nucleic Acid Research pp. 564–568 Edited by Cantoni G. L., Davies D. R. New York: Harper and Row;
    [Google Scholar]
  25. Tabor C. W., Rosenthal S. M. 1963; Determination of spermine, spermidine, putrescine and related compounds. Methods in Enzymology 6:615–622
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-26-3-287
Loading
/content/journal/jgv/10.1099/0022-1317-26-3-287
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error