1887

Abstract

SUMMARY

The structural proteins E1, E2a, E2b and C of rubella virus (RV) were purified by preparative SDS-PAGE. The individual proteins were subjected to amino-terminal sequence analysis by Edman degradation, carboxyl-terminal structure analysis by digestion with carboxypeptidases and quantitative amino acid composition analysis. The partial amino-terminal sequences of E2a and E2b were identical and different from that of E1. The C protein did not yield any consistent results on Edman degradation, suggesting that its amino-terminus is blocked. The amino acid compositions of E2a and E2b were very similar and differed from that obtained for E1 and C, which also differed from each other. Carboxypeptidase digestions showed that E2a and E2b have an identical carboxyl-terminal structure, which differed from that of the C protein. No amino acid residues were released from the E1 protein by digestion with a mixture of carboxypeptidases A and B. These results confirm that the structural proteins of RV are translated from three genes corresponding to C, E2 and E1. E2 exists in virions in two post-translationally modified forms, E2a and E2b, which have an identical apoprotein moiety. The partial amino acid sequence information obtained here should also be sufficient to localize the ends of the individual genes on the 24S mRNA genome once its nucleotide sequence has been established.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-65-9-1549
1984-09-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/65/9/JV0650091549.html?itemId=/content/journal/jgv/10.1099/0022-1317-65-9-1549&mimeType=html&fmt=ahah

References

  1. Ambler R. P. 1972; Carboxypeptidases A and B. Methods in Enzymology 25:262–272
    [Google Scholar]
  2. Bell J. R., Hunkapiller M. W., Hood L., Strauss J. H. 1978; Amino-terminal sequence analysis of the structural proteins of Sindbis virus. Proceedings of the National Academy of Sciences, U. S. A 75:2722–2726
    [Google Scholar]
  3. Bhown A. S., Bennett J. C. 1983; High sensitivity sequence analysis of proteins recovered from sodium dodecyl sulfate gels. Methods in Enzymology 91:450–455
    [Google Scholar]
  4. Boege U., Wengler G., Wengler G., Wittmann-Liebold B. 1980; Partial amino acid sequences of Sindbis and Semliki Forest virus-specific core proteins. Virology 103:178–190
    [Google Scholar]
  5. Chang I.-Y., Knecht R., Braun D. G. 1981; Amino acid analysis at the picomole level. Biochemical Journal 199:547–555
    [Google Scholar]
  6. Fiers W., Contreras R., Haegeman G., Rogiers R., Van De Voorde A., Van Heuwerswyn H., Van Hereheghe J., Volckaert G., Ysebaert M. 1978; Complete nucleotide sequence of SV40 DNA. Nature, London 273:113–120
    [Google Scholar]
  7. Folk J. E., Schirmer E. W. 1963; The porcine pancreatic carboxypeptidase A system. I. Three forms of the active enzyme. Journal of Biological Chemistry 238:3884–3894
    [Google Scholar]
  8. Folk J. E., Piez K. A., Carrol W. R., Gladner J. A. 1960; Carboxypeptidase B. IV. Purification and characterization of the porcine enzyme. Journal of Biological Chemistry 235:2272–2277
    [Google Scholar]
  9. Garoff H., Frischauf A.-M., Simons K., Lehrach H., Delius H. 1980; The capsid protein of Semliki Forest virus has clusters of basic amino acids and prolines in its amino-terminal region. Proceedings of the National Academy of Sciences, U. S. A 78:2062–2066
    [Google Scholar]
  10. Jornvall H., Ohlsson H., Philipsson L. 1974; An acetylated N-terminus of adenovirus type 2 hexon protein. Biochemical and Biophysical Research Communications 56:304–310
    [Google Scholar]
  11. Kalkkinen N. 1980; Carboxyl terminal sequence analysis of the four structural proteins of Semliki Forest virus. FEBS Letters 115:163–166
    [Google Scholar]
  12. Kalkkinen N., Jornvall H., Soderlund H., Kaariainen L. 1980; Analysis of Semliki Forest virus structural proteins to illustrate polyprotein processing of alpha viruses. European Journal of Biochemistry 108:30–37
    [Google Scholar]
  13. Kalkkinen N., Jornvall H., Kaariainen L. 1981a; Polyprotein processing of alphaviruses: N-terminal structural analysis of Semliki Forest virus proteins p62, E3 and ns70. FEBS letters 126:33–37
    [Google Scholar]
  14. Kalkkinen N., Laaksonen M., Soderlund H., Jornvall H. 1981b; Radio-sequence analysis of in vivo multi-labelled nonstructural protein ns86 of Semliki Forest virus. Virology 113:188–195
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  16. Oker-Blom C. 1984; The gene order for rubella virus structural proteins is: NH2-C-E2-E1-COOH. Journal of Virology (in press)
    [Google Scholar]
  17. Oker-blom C., Kalkkinen N., Kaariainen L., Pettersson R. F. 1983; Rubella virus contains one capsid protein and three envelope glycoproteins, E1, E2a and E2b. Journal of Virology 46:964–973
    [Google Scholar]
  18. Oker-Blom C., Ulmanen I., Kaariainen L., Pettersson R. F. 1984; Rubella virus 40S genome RNA specifies a 24S subgenomic mRNA that codes for a precursor to structural proteins. Journal of Virology 49:403–408
    [Google Scholar]
  19. Peterson J. D., Nehrlich S., Oyer P. E., Steiner D. F. 1972; Determination of the amino acid sequence of the monkey, sheep and dog proinsulin C-peptides by a semi-micro Edman degradation procedure. Journal of Biological Chemistry 247:4866–4871
    [Google Scholar]
  20. Rice C. M., Strauss J. H. 1981; Nucleotide sequence of the 26SmRNAof Sindbis virus and deduced sequence of the encoded virus structural proteins. Proceedings of the National Academy of Sciences, U. S. A 78:2062–2066
    [Google Scholar]
  21. Soeda E., Arrand J. R., Friffin B. E. 1980; Polyoma virus DNA: complete nucleotide sequence of the gene which codes for polyoma virus capsid protein VP1 and overlaps the VP2/VP3 genes. Journal of Virology 33:619–630
    [Google Scholar]
  22. Strickland W. N., Strickland M., Brandt W. F., Von Holt C., Lehman A., Wittmann-Liebold B. 1980; The primary structure of histone HI from sperm of the sea urchin Parechinus angulosus. 2. Sequence of the C-terminal CNBr peptide and the entire primary structure. European Journal of Biochemistry 104:567–578
    [Google Scholar]
  23. Toivonen V., Vainionpaa R., Salmi A., Hyypia T. 1983; Glycoproteins of rubella virus. Archives of Virology 77:91–95
    [Google Scholar]
  24. Vaheri A., Hovi T. 1972; Structural proteins and subunits of rubella virus. Journal of Virology 9:10–16
    [Google Scholar]
  25. Waxham M. N., Wolinsky J. S. 1983; Immunochemical identification of rubella virus hemagglutinin. Virology 126:194–203
    [Google Scholar]
  26. Zimmerman C. L., Appella E., Pisano L. J. 1977; Rapid analysis of amino acid phenylthiohydantoins by high performance liquid chromatography. Analytical Biochemistry 77:569–573
    [Google Scholar]
  27. Ziola B. R., Scraba D. G. 1976; Structure of the mengo virion. IV. Amino-and carboxyl-terminal analyses of the major capsid polypeptides. Virology 71:111–121
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-65-9-1549
Loading
/content/journal/jgv/10.1099/0022-1317-65-9-1549
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error