1887

Abstract

Summary

DNA from virus (MCV) isolates was analysed by restriction endonuclease cleavage, revealing two virus subtypes. Physical maps of cleavage sites for HII and dIII were constructed, and found to differ extensively between the two subtypes. MCV DNA was similar to Orthopoxvirus DNA with respect to size, terminal cross-linking and the presence of inverted terminal repetitions, but did not hybridize with vaccinia virus DNA. The genomes of the two MCV subtypes cross-hybridized and were colinear except for two small regions. There was sequence homology between DNA from corresponding map regions of the MCV subtypes but, in contrast to Orthopoxvirus DNA, no conservation of restriction sites. A synthetic oligonucleotide probe representing a conserved domain of epidermal growth factor, -transforming growth factor and the vaccinia growth factor identified equivalent regions of both MCV genomes as having the potential to encode this domain. This locus is similar to the position of the vaccinia growth factor gene in vaccinia virus DNA. Thus MCV may induce epidermal cell proliferation and tumourigenesis by expression of an epidermal growth factor-like polypeptide.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-68-3-673
1987-03-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/68/3/JV0680030673.html?itemId=/content/journal/jgv/10.1099/0022-1317-68-3-673&mimeType=html&fmt=ahah

References

  1. Blomquist M. C., Hunt L. T., Barker W. C. 1984; Vaccinia virus 19-kilodalton protein: relationship to several mammalian proteins, including two growth factors. Proceedings of the National Academy of Sciences U.S.A.: 81:7363–7367
    [Google Scholar]
  2. Brown J. P., Twardzik D. R., Marquardt H., Todaro G. J. 1985; Vaccinia virus encodes a polypeptide homologous to epidermal growth factor and transforming growth factor. Nature; London: 313491–492
    [Google Scholar]
  3. Chaney S. M. J., Warren K. G., Kettyls I., Zbitnue A., Subak-Sharpe J. H. 1983; A comparative analysis of restriction enzyme digests of the DNA of herpes simplex virus isolated from genital and facial lesions. Journal of General Virology 64:357–371
    [Google Scholar]
  4. Darai G., Reisner H., Scholz J., Schnitzler P., Lorbacher De Ruiz H. 1986; Analysis of the genome of Molluscum contagiosum virus by restriction endonuclease analysis and molecular cloning. Journal of Medical Virology 18:29–39
    [Google Scholar]
  5. Derynck R., Roberts A. B., Winkler M. E., Chen E. Y., Goeddel D. v. 1984; Human transforming growth factor-a: precursor structure and expression in E. coli . Cell 38:287–297
    [Google Scholar]
  6. Feinberg A. P., Vogelstein B. 1984; A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Analytical Biochemistry 137:266–267
    [Google Scholar]
  7. Geshelin P., Berns K. I. 1974; Characterisation and localisation of the naturally occurring cross-links in vaccinia virus DNA. Journal of Molecular Biology 88:785–796
    [Google Scholar]
  8. Gray A., Dull T. J., Ullrich A. 1983; Nucleotide sequence of epidermal growth factor cDNA predicts a 128,000-molecular weight protein precursor. Nature; London: 303722–725
    [Google Scholar]
  9. King C. S., Cooper J. A., Moss B., Twardzik D. R. 1986; Vaccinia virus growth factor stimulates tyrosine protein kinase activity of A431 cell epidermal growth factor receptors. Molecular and Cellular Biology 6:332–336
    [Google Scholar]
  10. Lee D. C., Rose T. M., Webb N. R., Todaro G. J. 1985; Cloning and sequence analysis of a cDNA for rat transforming growth factor-a. Nature; London: 313489–491
    [Google Scholar]
  11. Mcgeoch D. J., Moss H. W. M., Mcnab D., Frame M. C. 1987; DNA sequence and genetic content of the HindIII lregion in the short unique component of the herpes simplex virus type 2 genome: identification of the gene encoding glycoprotein G, and evolutionary comparisons. Journal of General Virology 68:19–38
    [Google Scholar]
  12. Mackett M., Archard L. C. 1979; Conservation and variation in Orthopoxvirus genome structure. Journal of General Virology 45:683–701
    [Google Scholar]
  13. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning.- A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  14. Nestor J. J., Newman s. R., Delustro B., Todaro G. J., Schreiber A. 1985; A synthetic fragment of rat transforming growth factor-a with receptor binding and antigenic properties. Biochemical and Biophysical Research Communications 129:226–232
    [Google Scholar]
  15. Parr R. P., Burnet I. W., Garon C. F. 1977; Structural characterisation of the Molluscum contagiosum virus genome. Virology 81:247–256
    [Google Scholar]
  16. Postlethwaite R. 1970; Molluscum contagiosum: a review. Archives of Environmental Health 21:432–452
    [Google Scholar]
  17. Reisner A. N. 1985; Similarity between the vaccinia virus 19 K early protein and epidermal growth factor. Nature; London: 313801–803
    [Google Scholar]
  18. Savage C. R., Hash J. H., Cohen S. J. 1973; Epidermal growth factor: location of disulphide bonds. Journal of Biological Chemistry 248:7669–7672
    [Google Scholar]
  19. Scott J., Urdea M., Quiroga M., Sanchez-Pescador R., Fong N., Selby M., Rutter W. J., Bell G. J. 1983; Structure of a mouse submaxillary messenger RNA encoding epidermal growth factor and seven related proteins. Science 221:236–240
    [Google Scholar]
  20. Simpson R. J., Smith J. A., Moritz R. L., O’Hare M. J., Rudland P. S., Morrison J. R., Lloyd C. I., Grego B., Burgess A. W., Nice E. 1985; Rat epidermal growth factor: complete amino acid sequence. European Journal of Biochemistry 153:629–637
    [Google Scholar]
  21. Stroobant P., Rice A. P., Gullick W. J., Cheng D. J., Kerr I. M., Waterfield M. D. 1985; Purification and characterisation of vaccinia virus growth factor. Cell 42:383–393
    [Google Scholar]
  22. Thein S. L., Wallace R. B. 1986; The use of synthetic oligonucleotides as specific hybridisation probes in the diagnosis of genetic disorders. In Genetic Analysis of Human Diseases: A Practical Approach pp 33–50 Davies K. E. Edited by Oxford: IRL Press;
    [Google Scholar]
  23. Twardzik D. R., Brown J. P., Ranchalis J. E., Todaro G. J., Moss B. 1985; Vaccinia virus-infected cells release a novel polypeptide functionally related to transforming and epidermal growth factors. Proceedings of the National Academy of Sciences U.S.A.: 825300–5304
    [Google Scholar]
  24. Venkatesan s., Gershowitz A., Moss B. 1982; Complete nucleotide sequences of two adjacent early vaccinia virus genes located within the terminal inverted repetition. Journal of Virology 44:637–646
    [Google Scholar]
  25. Wittek R., Moss B. 1980; Tandem repeats within the inverted terminal repetition of vaccinia virus DNA. Cell 21:277–284
    [Google Scholar]
  26. Wittek R., Menna A., Schumperli D., Stoffel S., Muller H. K., Wyler R. 1977; Hinddill and Sstl restriction sites mapped on rabbitpox virus and vaccinia virus DNA. Journal of Virology 23:669–678
    [Google Scholar]
  27. Wittek K. R., Menna A., Muller H. K., Schumperli D., Boseley P. G., Wyler R. 1978; Inverted terminal repeats in rabbitpox virus and vaccinia virus DNA. Journal of Virology 28:171–181
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-68-3-673
Loading
/content/journal/jgv/10.1099/0022-1317-68-3-673
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error