1887

Abstract

Summary

Antibodies to a synthetic peptide corresponding to the 141 to 160 amino acid sequence of the protein VP1 of type O foot-and-mouth disease virus (FMDV) neutralize a wider range of type O isolates than anti-virion serum. Extending this peptide at the amino terminus reduced the number of strains neutralized by the anti-peptide sera. Reactions with antisera to peptides representing non-contiguous native sequences showed that it was also possible to increase the number of strains effectively neutralized. Selected substitutions of a single amino acid at position 148 markedly altered the neutralizing specificity of antibodies elicited by the 141 to 160 peptide. In particular, a peptide with an L → S substitution at this position induced antibodies which neutralized a type O and a type A virus equally, and guinea-pigs inoculated with it were protected from challenge with either virus. Attempts to isolate variant viruses resistant to neutralization with anti-peptide antibody indicated that these occurred at low frequency, and there was some evidence that resistance may be partially conferred by mutations outside the peptide sequence.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-11-2919
1989-11-01
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/11/JV0700112919.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-11-2919&mimeType=html&fmt=ahah

References

  1. Acharya R., Fry E., Stuart D., Fox C., Rowlands D., Brown F. 1989; The three-dimensional structure of foot-and-mouth disease virus at 29 Å resolution. Nature London: 337709–716
    [Google Scholar]
  2. Barnett P. V., Ouldridge E. J., Rowlands D. J., Brown F., Parry N. R. 1989; Neutralizing epitopes of type O foot-and-mouth disease virus. I. Identification and characterization of three functionally independent, conformational sites. Journal of General Virology 70:1483–1491
    [Google Scholar]
  3. Bittle J. L., Houghten R. A., Alexander H., Shinnick T. M., Sutcliffe J. G., Lerner R. A., Rowlands D. J., Brown F. 1982; Protection against foot-and-mouth disease by immunisation with a chemically synthesised peptide predicted from the viral nucleotide sequence. Nature London: 29830–33
    [Google Scholar]
  4. Bolwell C., Clarke B. E., Parry N. R., Ouldridge E. J., Brown F., Rowlands D. J. 1989; Epitope mapping of foot-and-mouth disease virus with neutralizing monoclonal antibodies. Journal of General Virology 70:59–68
    [Google Scholar]
  5. Broekhuijsen M. P., Van RUN J. M. M., Blom A. J. M., Pouwels P. H., Enger-VALK B. E., Brown F., Francis M. I. 1987; Fusion proteins with multiple copies of the major antigenic determinant of foot-and-mouth disease virus protect both the natural host and laboratory animals. Journal of General Virology 68:3137–3143
    [Google Scholar]
  6. Brown F., Cartwright B. 1963; Purification of radioactive foot-and-mouth disease virus. Nature London: 1991168–1170
    [Google Scholar]
  7. Clarke B. E., Brown A. L., Currey K. M., Newton S. E., Rowlands D. J., Carroll A. R. 1987; Potential secondary and tertiary structure in the genomic RNA of foot-and-mouth disease virus. Nucleic Acids Research 15:7067–7079
    [Google Scholar]
  8. Clarke B. E., Newton S. E., Carroll A. R., Francis M. J., Appleyard G., Syred A. D., Highfield P. E., Rowlands D. J., Brown F. 1987a; Improved immunogenicity of a peptide epitope after fusion to hepatitis B core protein. Nature London: 330381–384
    [Google Scholar]
  9. DI Marchi R., Brooke G., Gale C., Cracknell V., Doel T., Mowat N. 1986; Protection of cattle against foot-and-mouth disease by synthetic peptide. Science 232:639–641
    [Google Scholar]
  10. Doel T. R., Gale C., Brooke G., Di Marchi R. 1988; Immunization against foot-and-mouth disease with synthetic peptides representing the C-terminal region of VP1. Journal of General Virology 69:2403–2406
    [Google Scholar]
  11. Fox G., Parry N. R., Barnett P. V., Mcginn B., Rowlands D. J., Brown F. 1989; The cell attachment site on foot-and-mouth disease virus includes the amino acid sequence RGD (arginine-glycine-aspartic acid). Journal of General Virology 70:625–637
    [Google Scholar]
  12. Francis M. J., Fry C. M., Rowlands D. I., Bittle J. L., Houghten R. A., Lerner R. A., Brown F. 1987; Immune response to uncoupled peptides of foot-and-mouth disease virus. Immunology 61:1–6
    [Google Scholar]
  13. Francis M. J., Hastings G. Z., Syred A. D., Mcginn B., Brown F., Rowlands D. J. 1987b; Non-responsiveness to a foot-and-mouth disease virus peptide overcome by addition of foreign helper T-cell determinants. Nature London: 330168–170
    [Google Scholar]
  14. Houghten R. A. 1985; General method for the rapid solid phase synthesis of large numbers of peptides: specificity of antigen-antibody interactions at the level of individual amino acids. Proceedings of the National Academy of SciencesU.S.A. 825131–5135
    [Google Scholar]
  15. Kurz C., Forss S., Kupper H., Strohmaier K., Schaller H. 1981; Nucleotide sequence and corresponding amino acid sequence of the gene for the major antigen of foot-and-mouth disease virus. Nucleic Acids Research 9:1919–1931
    [Google Scholar]
  16. Leban J. J., Bohm H. O., Thiel J. H., Beck E., Pfaff E. 1986; New approaches to a safe foot-and-mouth disease virus vaccine. In Peptides, Structure and FunctionProceedings of the 9th American Peptide Symposium Deber C. M., Hruby V. J., Kopple K. D. Rockford, Illinois: Pierce Chemical Co.;
    [Google Scholar]
  17. Ouldridge E. J., Parry N. R., Barnett P. V., Bolwell C., Rowlands D. J., Brown F., Bittle J. L., Houghten R. A., Lerner R. A. 1986; Comparison of the structures of the major antigenic sites of foot-and-mouth disease viruses of two different serotypes. In Vaccines ’86: New Approaches to Immunization45–50 Brown F., Chanock R. M., Lerner R. A. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Ouldridge E. J., Clarke B. E., Barnett P. V., Brown A., Parry N. R., Bolwell C., Rowlands D. J., Brown F. 1986b; Designing foot-and-mouth disease virus peptide vaccines with broad serological cross-reactivity. In Foot and Mouth DiseaseProceedings of the 17th ConferenceParisOctober 1986223–228Paris: Office International des Epizooties
    [Google Scholar]
  19. Parry N. R., Ouldridge E. J., Barnett P. V., Rowlands D. J., Brown F., Bittle J. L., Houghten R. A., Lerner R. A. 1985; Identification of neutralizing epitopes of foot-and-mouth disease virus. In Vaccines'85: Molecular and Chemical Basis of Resistance to Parasitic, Bacterial and Viral Diseases211–216 Lerner R. A., Chanock R. M., Brown F. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Parry N. R., Syred A., Rowlands D. J., Brown F. 1988; A high proportion of anti-peptide antibodies recognise foot-and-mouth disease virus particles. Immunology 64:567–572
    [Google Scholar]
  21. Parry N. R., Barnett P. V., Ouldridge E. J., Rowlands D. J., Brown F. 1989; Neutralizing epitopes of type O foot-and-mouth disease virus. II. Mapping three conformational sites with synthetic peptide reagents. Journal of General Virology 70:1493–1503
    [Google Scholar]
  22. Pfaff E., Mussgay M., Bohm H. O., Schulz G. F., Schaller H. 1982; Antibodies against a preselected peptide recognise and neutralise foot-and-mouth disease virus. EMBO Journal 1:869–874
    [Google Scholar]
  23. Pfaff E., Thiel H.-J., Beck E., Strohmaier K., Schaller H. 1988; Analysis of neutralizing epitopes on foot-and-mouth disease virus. Journal of Virology 62:2033–2040
    [Google Scholar]
  24. Robertson B. H., Morgan D. O., Moore D. M. 1984; Location of neutralizing epitopes denned by monoclonal antibodies generated against the outer capsid polypeptide, VP1, of foot-and-mouth disease virus A12. Virus Research 1:489–500
    [Google Scholar]
  25. Rowlands D. J., Harris T. J. R., Brown F. 1978; More precise location of the polycytidylic acid tract in foot-and-mouth disease virus RNA. Journal of Virology 26:335–343
    [Google Scholar]
  26. Rowlands D. I., Clarke B. E., Carroll A. R., Brown F., Nicholson B. H., Bittle J. L., Houghten R. A., Lerner R. A. 1983; Chemical basis of antigenic variation in foot-and-mouth disease virus. Nature London: 306694–697
    [Google Scholar]
  27. Rweyemamu M. M., Hingley P. J. 1984; Foot-and-mouth disease virus strain differentiation: analysis of the serological data. Journal of Biological Standardization 12:323–337
    [Google Scholar]
  28. Rweyemamu M. M., Booth J.c., Head M., Pay T. W. F. 1978; Microneutralization test for serological typing and sub-typing of foot-and-mouth disease virus strains. Journal of Hygiene 81:107–123
    [Google Scholar]
  29. Rweyemamu M. M., Ouldridge E. J., Head M., Ferrari R. 1984; The effect of antiserum quality on strain specificity assessment of foot-and-mouth disease virus by the neutralization reaction. Journal of Biological Standardization 12:295–303
    [Google Scholar]
  30. Skinner H. H. 1953; One week old white mice as test animals in foot-and-mouth disease research. In Proceedings of the XVth International Veterinary CongressStockholm II208–210
    [Google Scholar]
  31. Strohmaier K., Franze R., Adam K.-H. 1982; Location and characterization of the antigenic portion of the FMDV immunizing protein. Journal of General Virology 59:295–306
    [Google Scholar]
  32. Thomas A. A. M., Woortmeijer R. K., Puijk W., Barteling S. J. 1988; Antigenic sites on foot-and-mouth disease virus type A10. Journal of Virology 62:2782–2789
    [Google Scholar]
  33. Xie Q.-C, Mccahon D., Crowther J. R., Belsham G. J., Mccullough K.C. 1987; Neutralization of foot-and-mouth disease virus can be mediated through any of at least three separate antigenic sites. Journal of General Virology 68:1637–1647
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-11-2919
Loading
/content/journal/jgv/10.1099/0022-1317-70-11-2919
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error