1887

Abstract

SUMMARY

Using antisera made against peptides corresponding to different regions of the large subunit of herpes simplex virus type 1 ribonucleotide reductase we have probed proteolytic fragments of this protein and found that at least a part of its unique N-terminal domain is not necessary for enzyme activity. This non-essential region encompasses the domain previously predicted to be composed of sheets with a well buried core of hydrophobic residues. Truncated forms of the large subunit are generated and are located almost exclusively in the nucleus.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-12-3159
1989-12-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/12/JV0700123159.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-12-3159&mimeType=html&fmt=ahah

References

  1. Anderson K. P., Frink R. J., Devi G. B., Gaylord B. H., Costa R. H., Wagner E. K. 1981; Detailed characterization of the mRNA mapping in the HindIII fragment K region of the herpes simplex virus type 1 genome. Journal of Virology 37:1011–1027
    [Google Scholar]
  2. Atherton E., Gait M. J., Sheppard R. C., Williams B. J. 1979; The polyamide method of solid phase peptide and oligonucleotide synthesis. Bioorganic Chemistry 8:351–370
    [Google Scholar]
  3. Bacchetti S., Evelegh M. J., Muirhead B. 1986; Identification and separation of the two subunits of the herpes simplex virus ribonucleotide reductase. Journal of Virology 57:1177–1181
    [Google Scholar]
  4. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C. 1984; DNA sequence and expression of the B95-8 Epstein-Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  5. Bassiri R. M., Dvorak J., Utiger R. D. 1979; Thyrotropin-releasing hormone. In Methods of Hormone Radioimmunoassay46–47 Jaffe B. M., Behrman H. R. New York: Academic Press;
    [Google Scholar]
  6. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72:248–254
    [Google Scholar]
  7. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  8. Cameron J. M., McDougall I., Marsden H. S., Preston V. G., Ryan D. M., Subak-Sharpe J. H. 1988; Ribonucleotide reductase encoded by herpes simplex virus is a determinant of the pathogenicity of the virus in mice and a valid antiviral target. Journal of General Virology 69:2607–2612
    [Google Scholar]
  9. Caras I., Lewinson B. B., Farby W., Williams S. R., Martin D. W. jr 1985; Cloned mouse ribonucleotide reductase M2 cDNA reveals amino acid sequence homology with Escherichia coli and herpes ribonucleotide reductase. Journal of Biological Chemistry 260:7015–7022
    [Google Scholar]
  10. Carlson J., Fuchs J. A., Messing I. 1984; Primary structure of the Escherichia coli ribonucleoside diphosphate reductase operon. Proceedings of the National Academy of SciencesU.S.A 81:4294–4297
    [Google Scholar]
  11. Cohen G. H. 1972; Ribonucleotide reductase activity of synchronized KB cells infected with herpes simplex virus. Journal of Virology 9:408–409
    [Google Scholar]
  12. Cohen E. A., Charron J., Perret J., Langelier Y. 1985; Herpes simplex virus ribonucleotide reductase induced in infected BHK-21/C13 cells: biochemical evidence for the existence of two non-identical subunits, H1 and H2. Journal of General Virology 66:733–745
    [Google Scholar]
  13. Darling A. J., McKay E. M., Ingemarsson R., Preston V. G. 1988; Reconstitution of herpes simplex virus type 1 ribonucleotide reductase activity from the large and small subunits. Virus Genes 2:163–176
    [Google Scholar]
  14. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  15. Dingwall C., Laskey R. A. 1986; Protein import into cell nucleus. Annual Review of Cell Biology 2:367–390
    [Google Scholar]
  16. Draper K. G., Frink R. J., Wagner E. K. 1982; Detailed characterisation of an apparently unspliced β herpes simplex virus type 1 gene mapping in the interior of another. Journal of Virology 43:1123–1128
    [Google Scholar]
  17. Dutia B. M. 1983; Ribonucleotide reductase induced by herpes simplex virus has a virus-specified constituent. Journal of General Virology 64:513–521
    [Google Scholar]
  18. Elledge S. J., Davis R. W. 1987; Identification and isolation of the gene encoding the small subunit of ribonucleotide reductase from Saccharomyces cerevisiae: DNA damage-inducible gene required for mitotic viability. Molecular and Cellular Biology 7:2783–2793
    [Google Scholar]
  19. Eriksson S., Sjöberg B.-M. 1989; Ribonucleotide reductase. In Allosteric Enzymes189–217 Herve G. Boca Raton: CRC Press;
    [Google Scholar]
  20. Frame M. C., Marsden H. S., Dutia B. M. 1985; The ribonucleotide reductase induced by herpes simplex virus type 1 involves minimally a complex of two polypeptides (136K and 38K). Journal of General Virology 66:1581–1587
    [Google Scholar]
  21. Galloway D. A., Swain M. A. 1984; Organization of the left-hand end of the herpes simplex virus. 2 BglII N fragment. Journal of Virology 49:724–730
    [Google Scholar]
  22. Galloway D. A., Goldstein L. C., Lewis J. B. 1982; Identification of proteins encoded by a fragment of herpes simplex virus type 2 DNA that has transforming activity. Journal of Virology 42:530–537
    [Google Scholar]
  23. Gibson T., Stockwell P., Ginsberg M., Barrell B. 1984; Homology between two EBV early genes and HSV ribonucleotide reductase and 38K genes. Nucleic Acids Research 12:5087–5099
    [Google Scholar]
  24. Huang A., Jacobi G., Haj-Ahmad Y., Bachetti S. 1988; Expression of the HSV-2 ribonucleotide reductase subunits in adenovirus vectors or stably transformed cells: restoration of enzymatic activity by reassociation of enzyme subunits in the absence of other HSV proteins. Virology 163:462–470
    [Google Scholar]
  25. Hurd H. K., Roberts C. W., Roberts J. W. 1987; Identification of the gene for the yeast ribonucleotide reductase small subunit and its inducibility by methyl methanesulfonate. Molecular and Cellular Biology 7:3673–3677
    [Google Scholar]
  26. Ingemarson R., Lankinen H. 1987; The herpes simplex virus type 1 ribonucleotide reductase is a tight complex of the type α 2 β 2 composed of 40k and 140k proteins, of which the latter shows multiple forms due to proteolysis. Virology 156:417–422
    [Google Scholar]
  27. Kagan A., Glick M. 1979; Oxytocin. In Methods of Hormone Radioimmunoassay327–329 Jaffe B. M., Behrmann H. R. New York: Academic Press;
    [Google Scholar]
  28. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227:680–685
    [Google Scholar]
  29. Lammers M., Follmann H. 1983; The ribonucleotide reductases – a unique group of metalloenzymes essential for cell proliferation. Structure and Bonding 54:27–91
    [Google Scholar]
  30. Macpherson I., Stoker M. G. 1962; Polyoma transformation of hamster cell clones – an investigation of genetic factors affecting cell competence. Virology 16:147–151
    [Google Scholar]
  31. Marsden H. S., Crombie I. K., Subak-Sharpe J. H. 1976; Control of protein synthesis in herpesvirus-infected cells: analysis of the polypeptides induced by wild type and sixteen temperature-sensitive mutants of HSV strain 17. Journal of General Virology 31:347–372
    [Google Scholar]
  32. Marsden H. S., Stow N. D., Preston V. G., Timbury M. C., Wilkie N. M. 1978; Physical mapping of herpes simplex virus-induced polypeptides. Journal of Virology 28:624–642
    [Google Scholar]
  33. McGeoch D. J., Dalrymple M. A., Davison A. J., Dolan A., Frame M. C., McNab D., Perry L. J., Scott J. E., Taylor P. 1988; The complete DNA sequence of the long unique region in the genome of herpes simplex virus type 1. Journal of General Virology 69:1531–1547
    [Google Scholar]
  34. McLauchlan J., Clements J. B. 1982; A 3′ co-terminus of two early herpes simplex virus type 1 mRNA. Nucleic Acids Research 10:501–512
    [Google Scholar]
  35. McLauchlan J., Clements J. B. 1983a; DNA sequence homology between two co-linear loci on the HSV genome which have different transforming abilities. EMBO Journal 2:1953–1961
    [Google Scholar]
  36. McLauchlan J., Clements J. B. 1983b; Organization of the herpes simplex virus type 1 transcription unit encoding two early proteins with molecular weights of 140000 and 40000. Journal of General Virology 64:997–1006
    [Google Scholar]
  37. Nikas I., McLauchlan J., Davison A. J., Taylor W. R., Clements J. B. 1986; Structural features of ribonucleotide reductase. Proteins: Structure, Function and Genetics 1:376–384
    [Google Scholar]
  38. Paradis H., Gaudreau P., Brazeau P., Langelier Y. 1988; Mechanism of inhibition of herpes simplex virus (HSV) ribonucleotide reductase by a nonapeptide corresponding to the carboxyl terminus of its subunit 2. Journal of Biological Chemistry 263:16045–16050
    [Google Scholar]
  39. Posnett D. N., McGrath H., Tam J. P. 1988; A novel method for producing anti-peptide antibodies. Journal of Biological Chemistry 263:1719–1725
    [Google Scholar]
  40. Preston C. M. 1979; Abnormal properties of an immediate early polypeptide in cells infected with the herpes simplex virus type 1 mutant tsK. Journal of Virology 32:357–369
    [Google Scholar]
  41. Preston V. G., Palfreyman J. W., Dutia B. M. 1984; Identification of a herpes simplex virus type 1 polypeptide which is a component of the virus-induced ribonucleotide reductase. Journal of General Virology 65:1457–1466
    [Google Scholar]
  42. Reichard P. 1988; Interactions between deoxyribonucleotide and DNA synthesis. Annual Review of Biochemistry 57:349–374
    [Google Scholar]
  43. Sheppard R. C. 1983; Continuous flow methods in organic synthesis. Chemistry in Britain 19:402–413
    [Google Scholar]
  44. Sjöberg B.-M., Eriksson S., Jornvall H., Carlquist M., Eklund H. 1985; Protein B1 of ribonucleotide reductase. Direct analytical data and comparisons with data indirectly deduced from the nucleotide sequence of the Escherichia coli nrd A gene. European Journal of Biochemistry 150:423–427
    [Google Scholar]
  45. Sjöberg B.-M., Hahne S., Mathews C. Z., Mathews C. K., Band K. N., Gait M. J. 1986; The bacteriophage T4 gene for the small subunit of ribonucleotide reductase contains an intron. EMBO Journal 5:2031–2036
    [Google Scholar]
  46. Slabaugh M., Roseman N., Davis R., Mathews C. 1988; Vaccinia virus-encoded ribonucleotide reductase: sequence conservation of the gene for the small subunit and its amplification in hydroxyurea-resistant mutants. Journal of Virology 62:519–527
    [Google Scholar]
  47. Standart N. M., Bray S. J., George E. L., Hunt T., Ruderman J. V. 1985; The small subunit of ribonucleotide reductase is encoded by one of the most abundant translationally regulated maternal mRNAs in clam and sea urchin eggs. Cell Biology 100:1968–1976
    [Google Scholar]
  48. Swain M. A., Galloway D. A. 1986; Herpes simplex virus specifies two subunits of ribonucleotide reductase encoded by 3′ coterminal transcripts. Journal of Virology 57:802–808
    [Google Scholar]
  49. Tam J. P. 1988; Synthetic peptide vaccine design: synthesis and properties of a high-density multiple antigenic peptide system. Proceedings of the National Academy of SciencesU.S.A 85:5409–5413
    [Google Scholar]
  50. Thelander L., Reichard P. 1979; Reduction of ribonucleotides. Annual Review of Biochemistry 48:133–158
    [Google Scholar]
  51. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proceedings of the National Academy of SciencesU.S.A 76:4350–4354
    [Google Scholar]
  52. Walter G., Scheidtmann K.-H., Carbone A., Laudano A. P., Doolittle R. F. 1980; Antibodies specific for the carboxy- and amino-terminal regions of simian virus 40 large tumor antigen. Proceedings of the National Academy of SciencesU.S.A 77:5197–5200
    [Google Scholar]
  53. Zieve G., Penman S. 1976; Small RNA species of the HeLa cell: metabolism and subcellular localization. Cell 8:19–31
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-12-3159
Loading
/content/journal/jgv/10.1099/0022-1317-70-12-3159
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error