1887

Abstract

SUMMARY

The complete nucleotide sequence of the genome of the enterovirus swine vesicular disease virus (SVDV; H/3 76) isolated from a healthy pig has been determined using molecular cloning and DNA sequencing techniques. The RNA genome was 7400 nucleotides long, excluding the poly(A) tract, and appeared to encode a single polyprotein of 2185 amino acids. The predicted amino acid sequence of the polyprotein showed close homology (around 90%) to that of the previously sequenced coxsackie-viruses B1, B3 and B4, and also showed homology (around 60%) to that of poliovirus. This homology allows us to predict the possible cleavage sites of the polyprotein and to identify other features of structural and functional significance, which seem to be important to the biological integrity of the virus. A detailed analysis of homology between SVDV and coxsackieviruses shows that non-structural proteins are highly conserved whereas the structural proteins are less well conserved. The 5′ and 3′ non-coding regions are also conserved, although there are several divergent nucleotide stretches. These stretches may differentiate SVDV from coxsackieviruses.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-4-919
1989-04-01
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/4/JV0700040919.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-4-919&mimeType=html&fmt=ahah

References

  1. Argos P., Kamer G., Nicklin M. J. H., Wimmer E. 1984; Similarity in gene organization and homology between proteins of animal picornaviruses and a plant comovirus suggest a common ancestry of these virus families. Nutleic Acids Research 12:7251–7267
    [Google Scholar]
  2. Bienz K., Egger D., Rasser Y., Bossart W. 1983; Intracellular distribution of poliovirus proteins and the induction of virus-specific cytoplasmic structures. Virology 131:39–48
    [Google Scholar]
  3. Birnboim H. C., Doly J. 1979; A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acids Research 7:1513–1523
    [Google Scholar]
  4. Brown F., Wild F. 1974; Variation in the coxsackievirus type B5 and its possible role in the etiology of swine vesicular disease. Inlerrirology 3:125–128
    [Google Scholar]
  5. Brown F., Talbot P., Burrows R. 1973; Antigenic differences between isolates of swine vesicular disease virus and their relationship to coxsackie B5 virus. Nature, London 245:315–316
    [Google Scholar]
  6. Brown F., Wild T. F., Rowe L. W., Underwood B. O., Harris T. J. R. 1976; Comparison of swine vesicular disease virus and coxsackie B5 virus by serological and RNA hybridization methods. Journal of General Virology 31:231–237
    [Google Scholar]
  7. Burrows R., Mann J A., Goodridge D. 1974; Swine vesicular disease: comparative studies of viruses isolated from different countries. Journal of Hygiene 73:109–117
    [Google Scholar]
  8. Callahan P. L., Mizutani S., Colonno R. J. 1985; Molecular cloning and complete sequence determination of RNA genome of human rhinovirus type 14. Proceedings of the National Academy of Sciences, U.S.A 82:732–736
    [Google Scholar]
  9. Dawe P. S., Forman A. J., Smale C. J. 1973; A preliminary investigation of the swine vesicular disease epidemic in Britain. Nature, London 241:540–542
    [Google Scholar]
  10. Deng G., Wu R. 1981; An improved procedure for utilizing terminal transferase to add homopolymers to the 3′ termini of DNA. Nucleic Acids Research 9:4173–4188
    [Google Scholar]
  11. Earle J. A. P., Skuce R. A., Fleming C. S., Hoey E. M., Martin S. J. 1988; The complete nucleotide sequence of a bovine enterovirus. Journal of General Virology 69:253–263
    [Google Scholar]
  12. Forss S., Strebel K., Beck E., Schaller H. 1984; Nucleotide sequence and genome organization of foot-and- mouth disease virus. Nucleic Acids Research 12:6587–6601
    [Google Scholar]
  13. Garland A. J. M., Mann J. A. 1974; Attempts to infect pigs with coxsackie virus type B5. Journal of Hygiene 73:85–96
    [Google Scholar]
  14. Geliebter J. 1987; Dideoxynucleotide sequencing of RNA and uncloned cDNA. Focus 915–8 Gaithersburg: Bethesda Research Laboratories;
    [Google Scholar]
  15. Graves J. 1973; Serological relationship of swine vesicular disease virus and coxsackie B5 virus. Nature, London 245:314–315
    [Google Scholar]
  16. Grubman M. J., Baxt B., Bachrach H. L. 1979; Foot-and-mouth disease virion RNA : studies on the relation between the length of its 3′-poly(A) segment and infectivity. Virology 97:22–31
    [Google Scholar]
  17. Harris T. J. R., Brown F. 1975; Correlation of polypeptide composition with antigenic variation in the swine vesicular disease and coxsackie B5 viruses. Nature, London 258:758–760
    [Google Scholar]
  18. Harris T. J. R., Doel T. R., Brown E. 1977; Molecular aspects of the antigenic variation of swine vesicular disease and coxsackie B5 viruses. Journal of General Virology 35:299–315
    [Google Scholar]
  19. Henikoff S. 1984; Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene 28:351–359
    [Google Scholar]
  20. Hogle J. M., Chow M., Filman D. J. 1985; Three-dimensional structure of poliovirus at 29A resolution. Science 229:1358–1365
    [Google Scholar]
  21. Iizuka M., Kuge S., Nomoto A. 1987; Complete nucleotide sequence of the genome of coxsackievirus B1. Virology 156:64–73
    [Google Scholar]
  22. Ishihama A., Nagata A. 1988; Viral RNA polymerases. CRC Critical Reviews in Biochemistry 23:27–76
    [Google Scholar]
  23. Jenkins O., Booth J. D., Minor P. D., Almond J. W. 1987; The complete nucleotide sequence of coxsackievirus B4 and its comparison to other members of the Picornaviridae. Journal of General Virology 68:1835–1848
    [Google Scholar]
  24. Kamer G., Argos P. 1984; Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Research 12:7269–7282
    [Google Scholar]
  25. Kitamura N., Semler B. L., Rothberg P. G., Larsen G. R., Adler C. J., Dorner A. J., Emini E. A., Hanecak R., Lee J. J., Van Der Werf S., Anderson C. W., Wimmer E. 1981; Primary structure, gene organization and polypeptide expression of poliovirus RNA. Nature, London 291:547–553
    [Google Scholar]
  26. Knowles N. J., Buckley L. S., Pereira H. G. 1979; Classification of porcine enteroviruses by antigenic analysis and cytopathic effects in tissue culture: description of 3 new serotypes. Archives of Virology 62:201–208
    [Google Scholar]
  27. Kodama M. 1976; Outline of studies on swine vesicular disease in Japan. Bulletin de l’Office International des Epizooties 86:423–432
    [Google Scholar]
  28. Kodama M., Ogawa T., Saito T., Tokuda G., Sasahara J., Kumagxi T. 1980a; Swine vesicular disease virus isolated from healthy pigs in non-epizootic periods. I. Isolation and identification. National Institute of Animal Health Quarterly (Japan) 20:1–10
    [Google Scholar]
  29. Kodama M., Saito T., Ogawa T., Tokuda G., Sasahara J., Kumagai T. 1980; Swine vesicular disease viruses isolated from healthy pigs in non-epizootic periods. II. Vesicular formation and virus multiplication in experimentally inoculated pigs. National Institute of Animal Health Quarterly (Japan) 20:123–130
    [Google Scholar]
  30. Kozak M. 1986; Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44:283–292
    [Google Scholar]
  31. Kuge S., Nomoto A. 1987; Construction of viable deletion and insertion mutants of the Sabin strain of type 1 poliovirus ; function of the 5′ noncoding sequence in viral replication. Journal of Virology 61:1478–1487
    [Google Scholar]
  32. La Monica N., Meriam C., Racaniello V. R. 1986; Mapping of sequences required for mouse neurovirulence of poliovirus type 2 Lansing. Journal of Virology 57:515–525
    [Google Scholar]
  33. Lindberg A. M., St Lhandske P. O. K., Petterson U. 1987; Genome of coxsackievirus B3. Virology 156:50–63
    [Google Scholar]
  34. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning. A Laboratory lvtanual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Maxam A. M., Gilbert W. 1977; A new method for sequencing DNA. Proceedings of the National Academy of Sciences, U.S.A 74:560–564
    [Google Scholar]
  36. Mowat G. N., Darbyshire J. H., Huntley J. F. 1972; Differentiation of a vesicular disease of pigs in Hong Kong from foot-and-mouth disease. Veterinary Record 90:618–621
    [Google Scholar]
  37. Najarian R., Caput D., Gee W., Potter S. I., Renard A., Merryweather J., Nest G. V., Dina D. 1985; Primary structure and gene organization of human hepatitis A virus. Proceedings of ihe National Academy of SciencesU.S.A 82:2627–2631
    [Google Scholar]
  38. Nardelli L., Lodetti E., Gualandi G. L., Burrows R., Gcodridge D., Brown F., Cartwright B. 1968; A foot and mouth disease syndrome in pigs caused by an enterovirus. Nature, London 219:1275–1276
    [Google Scholar]
  39. Nomoto A., Kajigaya S., Suzuki K., Imura N. 1979; Possible point mutation sites in LSc, 2ab poliovirus RNA and a protein covalently linked to the 5′-terminus. Journal of General Virology 45:107–117
    [Google Scholar]
  40. Palmenberg A. C., Kirby E. M., Ianda M. R., Drake N. L., Duke G. M., POTRATZ K. F., Collett M. S. 1984; The nucleotide and deduced amino acid sequences of the encephalomyocarditis viral polyprotein coding region. Nucleic Acids Research 12:2969–2985
    [Google Scholar]
  41. Pevear D. C., Calenoff M., Rozhon E., Lipton H. L. 1987; Analysis of the complete nucleotide sequence of the picornavirus Theiler′s murine encephalomyelitis virus indicates that it is closely related to cardioviruses. Journal of Virology 61:1507–1516
    [Google Scholar]
  42. Porter A. G., Fellner P., Black D. N., Rowlands D. J., Harris T. J. R., Brown F. 1978; 3′-Terminal nucleotide sequences in the genome RNA of picornaviruses. Nature, London 276:298–301
    [Google Scholar]
  43. Rossmann M . G., Arnold E., Erickson J. W., Frankenberger B. A., Griffith I. P., Hecht H. J., Johnson J. E., Kamer G., Luo M., Mosser A. G., Rueckert R. R., Sherry B., Vriend G. 1985; Structure of a human common cold virus and functional relationships to other picornaviruses. Nature, London 317:145–153
    [Google Scholar]
  44. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, U.S.A 74:5463–5467
    [Google Scholar]
  45. Sarnow P., Bernstein H. D., Baltimore D. 1986; A poliovirus temperature-sensitive RNA synthesis mutant located in a noncoding region of the genome. Proceedings of the National Academy of Sciences, U.S.A 83:571–575
    [Google Scholar]
  46. Skfrn T., Sommergruber W., Blaas D., Gruendler P., Fraundorfer F., Pieler C., Fogy I., Kubchler E. 1985; Human rhinovirus 2: complete nucleotide sequence and proteolytic processing signals in the capsid protein. Nucleic Acids Research 13:2111–2126
    [Google Scholar]
  47. Sthandske P. O. K., Lindberg M., Pettersson U. 1984; Replicase gene of coxsackievirus B3. Journal of Virology 51:742–746
    [Google Scholar]
  48. Stanway G., Hughes P. J., Mountford R. C., Minor P. D., Almond J. W. 1984a; The complete nucleotide sequence or a common cold virus: human rhinovirus 14. Nucleic Acids Research 12:7859–7875
    [Google Scholar]
  49. Stanway G., Hughes P. J., Mountford R. C., Reeve P., Minor P. D., Schild G. C., Almond J. W. 1984b; Comparison of the complete nucleotide sequences of the genomes of the neurovirulent poliovirus P3/Leon/37 and its attenuated Sabin vaccine derivative P3/ Leon 12a b. Proceedings of the National Academy of Sciences, U.S.A 81:1539–1543
    [Google Scholar]
  50. Takegami T., Kuhn R. J., Anderson C. W., Wimmer E. 1983; Membrane-dependent uridylylation of the genome-linked protein Vpg of poliovirus. Proceedings of the National Academy of sciences, U.S.A 80:7447–7451
    [Google Scholar]
  51. Toyoda H., Kohara M., Kataoka Y., Suganuma T., Omata T., Imura N., Nomoto A. 1984; Complete nucleotide sequences of all three poliovirus serotype genomes: implication for genetic relationship, gene function and antigenic determinants. Journal of Molecular Biology 174:561–585
    [Google Scholar]
  52. Toyoda H., Nicklin M. J. H., Murray M. G., Anderson C. W., Dunn J. I., Studier P. W., Wimmer E. 1986; A second virus-encoded proteinase involved in proteolytic processing of poliovirus polyprotein. Cell US761–770
    [Google Scholar]
  53. Tracy S., , Liu H-L., Chnpman N. M. 1985; Coxsackievirus B3 : primary structure of the 5′ non-coding and capsid protein-coding regions of the genome. Virus Research 3:263–270
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-4-919
Loading
/content/journal/jgv/10.1099/0022-1317-70-4-919
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error