1887

Abstract

Summary

The Epstein-Barr virus nuclear antigen 2 (EBNA 2) shows serotype variation and two serologically distinct groups of viruses have been identified. These correspond to the two hybridization groups of viruses (A and B) that are distinguished by a highly substituted nucleic acid sequence in the middle of the open reading frame of the EBNA 2 gene. An epitope survey of the EBNA 2-coding region was carried out using a new prokaryotic expression vector tailored to express DNA fragments from the M13 sequencing libraries of the B95-8 (type A) and Jijoye (type B) prototype virus strains. Short overlapping stretches of EBNA 2 sequence were expressed as fusion proteins and used in Western blotting with human sera that contained serotype-specific antibodies. The type A-specific epitope was located between residues 378 and 435 of the B95-8 EBNA 2 polypeptide and the type B-specific epitope mapped between residues 390 and 454, at the carboxy terminus of the Jijoye polypeptide chain. All of the type-specific anti-EBNA 2 sera tested reacted with fusion proteins containing one or other of these epitopes. Despite the direct correlation between the hybridization and serological phenotypes, the type-specific epitopes appear to lie in the relatively conserved carboxy-terminal region of EBNA 2. There was no indication that the residues of the non-homologous region contributed to the formation of antibody-combining sites.

Keyword(s): EBNA 2 , epitope and nuclear angiten
Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-5-1217
1989-05-01
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/5/JV0700051217.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-5-1217&mimeType=html&fmt=ahah

References

  1. Adldinger H. K., Delius H., Freese U. K., Clarke J., Bornkamm G. 1985; A putative transforming gene of Jijoye virus differs from that of Epstein–Barr virus prototypes. Virology 141:221–234
    [Google Scholar]
  2. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature, London 310:207–211
    [Google Scholar]
  3. Benjamin D. C., Berofsky J. A., East I. J., Gurd F. R. N., Hannun C, Leach S. J., Tod P. F., Wilson A. C. 1984; The antigenic structure of proteins: a reappraisal. Annual Review of Immunology 2:67–101
    [Google Scholar]
  4. Berofsky J. A. 1985; Intrinsic and extrinsic factors in protein antigenic structure. Science 229:932–940
    [Google Scholar]
  5. Bodescot M., Chambraud B., Farrell P., Perricaudet M. 1984; Spliced RNA from the IRI-U2 region of Epstein–Barr virus: presence of an opening reading frame for a repetitive polypeptide. EMBO Journal 3:1913–1917
    [Google Scholar]
  6. Brown N. A., Liu C-R., Wang Y-F., Garcia C. R. 1988; B-cell lymphoproliferation and lymphomagenesis are associated with clonotypic intracellular terminal regions of the Epstein–Barr virus. Journal of Virology 62:962–969
    [Google Scholar]
  7. Burnette W. N. 1981; “Western blotting”: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radioiodinated protein A. Analytical Biochemistry 112:195–203
    [Google Scholar]
  8. Dambaugh T., Hennessy K., Chamnaukit L., Kieff E. 1984; U2 region of Epstein–Barr virus DNA may encode Epstein–Barr nuclear antigen 2. Proceedings of the National Academy of SciencesU.S.A 81:7632–7636
    [Google Scholar]
  9. De Thé G. 1982; Epidemiology of Epstein–Barr virus and associated diseases. In The Herpesviruses25–103 Roizman B. New York: Plenum Press;
    [Google Scholar]
  10. Dillner J., Kalun B., Ehlin-Henriksson B., Timar L., Klein G. 1985a; Characterization of a second Epstein–Barr virus-determined nuclear antigen associated with the BamHI WYH region of EBV DNA. International Journal of Cancer 35:359–366
    [Google Scholar]
  11. Dillner J., Kallin B., Klein G., Jornvall H., Alexander H., Lerner R. 1985b; Antibodies against synthetic peptides react with the second EBV nuclear antigen. EMBO Journal 4:1813–1818
    [Google Scholar]
  12. Fischer D., Robert M., Shedd D., Summers W., Robinson J., Wolak J., Stefano J., Miller G. 1984; Identification of Epstein–Barr nuclear antigen polypeptide in mouse and monkey cells after gene transfer with a cloned 29-kilobase-pair subfragment of the genome. Proceedings of the National Academy of SciencesU.S.A 81:43–47
    [Google Scholar]
  13. Gottesman M. E., Adhya S., Das A. 1980; Transcription antitermination by bacteriophage lambda N gene product. Journal of Molecular Biology 140:57–75
    [Google Scholar]
  14. Hennessy K., Kieff E. 1985; A second nuclear protein is encoded by EBV in latent infection. Science 227:1238–1240
    [Google Scholar]
  15. Hennessy K., Fennewald S., Kieff E. 1985; A third viral nuclear protein in lymphoblasts immortalized by Epstein–Barr virus. Proceedings of the National Academy of SciencesU.S.A 82:5944–5948
    [Google Scholar]
  16. Johnson D. A., Gautsch J. W., Sportsman J. R., Elder J. H. 1984; Improved technique using non-fat dry milk for analysis of proteins and nucleic acids transferred to nitrocellulose. Gene Analysis Techniques 1:3–8
    [Google Scholar]
  17. Kaschka-Dierich C., Adams A., Lindahl T., Bornkamm G., Bjursell G., Klein G. 1976; Intracellular forms of Epstein–Barr virus DNA in human tumour cells in vivo . Nature, London 260:302–306
    [Google Scholar]
  18. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 111:680–685
    [Google Scholar]
  19. Laux G., Perricaudet M., Farrell P. J. 1988; A spliced Epstein–Barr virus gene expressed in immortalized lymphocytes is created by circularization of the linear viral genome. EMBO Journal 7:769–775
    [Google Scholar]
  20. Lindahl T., Adams A., Bjursell G., Bornkamm G., Kaschka-Dierich C., Jehn U. 1976; Covalently closed circular duplex DNA of Epstein–Barr virus in a human lymphoid cell line. Journal of Molecular Biology 102:511–530
    [Google Scholar]
  21. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  22. Mehra V., Sweetser D., Young R. A. 1986; Efficient mapping of protein antigenic determinants. Proceedings of the National Academy of SciencesU.S.A 83:7013–7017
    [Google Scholar]
  23. Miller G., Robinson J., Heston L., Lipman M. 1974; Differences between laboratory strains of Epstein–Barr virus based on immortalization, abortive infection and interference. Proceedings of the National Academy of SciencesU.S.A 71:4006–4010
    [Google Scholar]
  24. Moss D. J., Misko I. S., Burrows S. R., Burman K., Mccarthy R., Sculley T. B. 1988; CytOtoxic T-cell clones discriminate between A- and B-type Epstein–Barr virus transformation. Nature, London 331:719–721
    [Google Scholar]
  25. Nagai K., Thogersen H. C. 1984; Generation of beta globin by sequence specific proteolysis of a hybrid protein produced in Escherichia coli . Nature, London 309:75–78
    [Google Scholar]
  26. Petti L., Sample J., Wang F., Kieff E. 1988; A fifth Epstein–Barr virus nuclear protein (EBNA3C) is expressed in latently infected growth-transformed lymphocytes. Journal of Virology 62:1330–1338
    [Google Scholar]
  27. Pope J., Horne M., Scott W. 1968; Transformation of foetal human leukocytes in vitro by filtrates of a human leukaemic cell line containing herpes-like virus. International Journal of Cancer 3:857–866
    [Google Scholar]
  28. Raab-Traub N., Flynn K. 1986; The structure of the termini of the Epstein–Barr virus as a marker of clonal cellular proliferation. Cell 47:883–889
    [Google Scholar]
  29. Rabson M., Gradoville L., Heston L., Miller G. 1962; Non-immortalizing P3J-HR-1 Epstein–Barr virus: a deletion mutant of its transforming parent, Jijoye. Journal of Virology 44:834–844
    [Google Scholar]
  30. Rickinson A. B., Young L. S., Rowe M. 1987; Influence of the Epstein–Barr virus nuclear antigen EBNA 2 on the growth phenotype of virus-transformed B cells. Journal of Virology 61:1310–1317
    [Google Scholar]
  31. Ricksten A., Kallin B., Alexander H., Dillner J., Fahraeus R., Klein G., Lerner R., Rymo L. 1988; BamHI E region of the Epstein–Barr virus genome encodes three transformation-associated nuclear proteins. Proceedings of the National Academy of SciencesU.S.A 85:995–1000
    [Google Scholar]
  32. Rowe D. T., Farrell P. J., Miller G. 1987; Novel Epstein–Barr virus nuclear antigens recognized by human sera in latently infected lymphocytes. Virology 156:153–162
    [Google Scholar]
  33. Rowe D. T., Metlay J., Heston L., Miller G. 1985; Identification and expression of a nuclear antigen from the genomic region of the Jijoye strain of Epstein–Barr virus that is missing in its non-immortalizing deletion mutant P3HR1. Proceedings of the National Academy of SciencesU.S.A 82:7429–7433
    [Google Scholar]
  34. Sanger F., Nicklen S., Coulson A. R. 1977; DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of SciencesU.S.A 74:5463–5467
    [Google Scholar]
  35. Seigneurin I. M., Lavoue M. F., Genoulaz O., Bornkamm G. W., Lenoir G. M. 1987; Antibody response against the Epstein–Barr virus-coded nuclear antigen 2 (EBNA2) in different groups of individuals. International Journal of Cancer 40:349–354
    [Google Scholar]
  36. Staden R. 1982; An interactive graphics program for comparing and aligning nucleic acid and amino acid sequences. Nucleic Acids Research 10:2951–2961
    [Google Scholar]
  37. Summers N., Grogan E., Shedd D., Robert M., Liu C-R., Miller G. 1982; Stable expression in mouse cells of nuclear neoantigen after transfer of a 3-4-megadalton cloned fragment of Epstein–Barr virus DNA. Proceedings of the National Academy of SciencesU.S.A 79:5688–5692
    [Google Scholar]
  38. Wallace L. E., Young L. S., Rowe M., Rowe D. T., Rickinson A. B. 1987; Epstein–Barr virus-specific T-cell recognition of B-cell transformants expressing different EBN A 2 antigens. International Journal of Cancer 39:373–380
    [Google Scholar]
  39. Wang D., Liebowitz D., Kieff E. 1985; An EBV membrane protein expressed in immortalized lymphocytes transforms established rodent cells. Cell 43:831–840
    [Google Scholar]
  40. Wang F., Gregory C. D., Rowe M., Rickinson A. B., Wang D., Birkenbach M., Kikutani H., Kieff E. 1987; Epstein–Barr virus nuclear antigen 2 specifically induces expression of the B-cell activation antigen CD23. Proceedings of the National Academy of SciencesU.S.A 43:3452–3457
    [Google Scholar]
  41. Zimber U., Adldinger H. K., Lenoir G. M., Vuillaume M., Knebel-Doeberitz L. G., Desranges C, Wittmann P., Laux G., Freese P. 1986; Geographical prevalence of two Epstein–Barr virus types. Virology 154:56–66
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-5-1217
Loading
/content/journal/jgv/10.1099/0022-1317-70-5-1217
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error