1887

Abstract

Summary

Synthetic oligopeptides, corresponding to an amino acid sequence encoded by a potential 9000 product’s open reading frame (ORF-4) at the 3′ terminus of the transmissible gastroenteritis virus genome, were used to generate rabbit antiserum. These antibodies produced immune complexes with an 14000 (14K) polypeptide in infected cells. The 14K product was shown by immune fluorescence to become associated with the cell nucleus, correlating with the onset of nuclear vacuolation, and suggesting a role in pathogenesis for the ORF-4 gene.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-70-9-2495
1989-09-01
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/jgv/70/9/JV0700092495.html?itemId=/content/journal/jgv/10.1099/0022-1317-70-9-2495&mimeType=html&fmt=ahah

References

  1. Brayton P. R., Ganges R. G., Stohlman S. A. 1981; Host cell nuclear function and murine hepatitis virus replication. Journal of General Virology 56:457–460
    [Google Scholar]
  2. Britton P., Garwes D. J., Millson G. C., Page K., Bountiff L., Stewart F., Walmsley J. 1986; Towards a genetically engineered vaccine against transmissible gastroenteritis virus.In. Biomolecular Engineering in the European Community, Final Report301–313 Magnien E. The Hague: Martinus Nijhoff;
    [Google Scholar]
  3. Britton P., Carmenes R. S., Page K. W., Garwes D. J., Parra F. 1988; Sequence of the nucleoprotein gene from a virulent British field isolate of transmissible gastroenteritis virus and its expression in Saccharomyces cerevisiae . Molecular Microbiology 2:89–99
    [Google Scholar]
  4. Clarke M. C. 1968; The effect of 5-bromodeoxyuridine and actinomycin D on the multiplication of transmissible gastroenteritis virus. Journal of General Virology 3:267–270
    [Google Scholar]
  5. Evans M. R., Simpson R. W. 1980; The corona virus avian infectious bronchitis virus requires the cell nucleus and host transcriptional factors. Virology 105:582–591
    [Google Scholar]
  6. Garwes D. J., Pocock D. H. 1975; The polypeptide structure of transmissible gastroenteritis virus. Journal of General Virology 29:25–34
    [Google Scholar]
  7. Garwes D. J., Bountiff L., Millson G. C., Elleman C. J. 1984; Defective replication of porcine transmissible gastroenteritis virus in a continuous cell line. Advances in Experimental Medicine and Biology 173:79–93
    [Google Scholar]
  8. Hart G. W., Holt G. D., Haltiwanger R. S. 1988; Nuclear and cytoplasmic glycosylation: novel saccharide linkages in unexpected places. Trends in Biochemical Sciences 13:380–384
    [Google Scholar]
  9. Jacobs L., Van der zeust B. A. M., Horzinek M. C. 1986; Characterization and translation of transmissible gastroenteritis virus mRNAs. Journal of Virology 57:1010–1015
    [Google Scholar]
  10. Kapke P. A., Brian D. A. 1986; Sequence analysis of the porcine transmissible gastroenteritis coronavirus nucleocapsid protein gene. Virology 151:41–49
    [Google Scholar]
  11. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature London: 227:680–685
    [Google Scholar]
  12. Landschultz W. H., Johnson P. F., Mcknight S. L. 1988; The leucine zipper: a hypothetical structure common to a new class of DNA binding proteins. Science 240:1759–1764
    [Google Scholar]
  13. Rasschaert D., Gelfi J., Laude H. 1987; Enteric coronavirus TGEV: partial sequence of the genomic RNA, its organisation and expression. Biochimie 69:591–600
    [Google Scholar]
  14. Wesley R. D., Woods R. D. 1986; Identification of a 17000 molecular weight antigenic polypeptide in transmissible gastroenteritis virus-infected cells. Journal of General Virology 67:1419–1425
    [Google Scholar]
  15. Wesley R., Woods R., Kapke P. 1987; Antibody responses in swine to individual transmissible gastroenteritis virus (TGEV) proteins. Advances in Experimental Medicine and Biology 218:475–481
    [Google Scholar]
  16. Wilhelmsen K. C., Leibowitz J. L., Bond C. W., Robb J. A. 1981; The replication of murine coronaviruses in enucleated cells. Virology 110:225–230
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-70-9-2495
Loading
/content/journal/jgv/10.1099/0022-1317-70-9-2495
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error