1887

Abstract

In peripheral sensory ganglia latently infected with herpes simplex virus type 1 (HSV-1) transcription is restricted. A set of viral latency-associated transcripts, the LATs, have been characterized by Northern blotting and hybridization. These transcripts have previously been mapped to a 3 kb region of the viral genome within the repeat long region. However, transcription from adjacent regions of the genome can be detected by hybridization, which cannot be detected by Northern blotting. These RNAs are termed minor LATs or m-LAT. In this study we show that in ganglia latently infected with the HSV-1 variant 1704, which is deleted in one complete copy of the LAT gene and in the promoter and 5′ portion of the other copy, m-LATs are not detected by hybridization. Furthermore, the levels of DNA in nervous system tissue latently infected with the parental and the 1704 variant virus are similar. Thus we propose that the sequence elements necessary for initiating transcription or stabilizing m-LATs are within the region deleted in variant 1704 that codes for the promoter and the 5′ end of the LATs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-4-953
1990-04-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/4/JV0710040953.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-4-953&mimeType=html&fmt=ahah

References

  1. Croen K. D., Ostrove J. M., Dragovic L. J., Smialek J. E., Straus S. E. 1987; Latent herpes simplex virus in human trigeminal ganglia. New England Journal of Medicine 317:1427–1432
    [Google Scholar]
  2. Deatly A. M., Spivack J. G., Lavi E., Fraser N. W. 1987; RNA from an immediate early region of the type 1 herpes simplex virus genome is present in the trigeminal ganglia of latently infected mice. Proceedings of the National Academy of Sciences U.S.A.: 843204–3208
    [Google Scholar]
  3. Deatly A. M., Spivack J. G., Lavi E., O’Boyle D. R., Fraser N. W. 1988; Latent herpes simplex virus type 1 transcripts in peripheral and central nervous system tissues of mice map to similar regions of the viral genome. Journal of Virology 62:749–756
    [Google Scholar]
  4. Javier R. T., Stevens J. G., Dissette V. B., Wagner E. K. 1988; A herpes simplex virus transcript abundant in latently infected neurons is dispensable for establishment of the latent state. Virology 166:254–257
    [Google Scholar]
  5. Leib D. A., Bogard C. L., Kosz-Vnenchak M., Hicks K. A., Coen D. M., Knipe D. M., Schaffer P. A. 1989; A deletion mutant of the latency-associated transcript of herpes simplex virus type 1 reactivates from the latent state with reduced frequency. Journal of Virology 63:2893–2900
    [Google Scholar]
  6. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  7. Mellerick D. M., Fraser N. W. 1986; Physical state of the latent herpes simplex virus genome in a mouse model system: evidence suggesting an episomal state. Virology 158:265–275
    [Google Scholar]
  8. Mitchell W. J., Lirette R. P., Fraser N. W. 1990; Mapping of low abundance latency-associated RNA in the trigeminal ganglia of mice latently infected with herpes simplex virus type 1. Journal of General Virology 71:125–132
    [Google Scholar]
  9. Post L. E., Conley A. J., Mocarski E. S., Roizman B. 1980; Cloning of reiterated and nonreiterated herpes simplex virus 1 sequences as BamHl fragments. Proceedings of the National Academy of Sciences U.S.A.: 774201–4205
    [Google Scholar]
  10. Rock D. L., Nesburn A. B., Ghiasi G., Ong J., Lewis T. L., Lockensgard J. R., Wechsler S. L. 1987; Detection of latency- related viral RNAs in trigeminal ganglia of rabbits latently infected with herpes simplex virus type 1. Journal of Virology 61:3820–3826
    [Google Scholar]
  11. Sedarati F., Izumi K. M., Wagner E. K., Stevens J. G. 1989; Herpes simplex virus type 1 latency-associated transcription plays no role in establishment or maintenance of a latent infection in murine sensory neurons. Journal of Virology 63:4455–4458
    [Google Scholar]
  12. Spivack J. G., Fraser N. W. 1987; Detection of herpes simplex virus type 1 transcripts during latent infection in mice. Journal of Virology 61:3841–3847
    [Google Scholar]
  13. Steiner I., Spivack J. G., O’Boyle D., Lavi E., Fraser N. W. 1988; Latent herpes simplex virus type 1 transcription in human trigeminal ganglia. Journal of Virology 62:3493–3496
    [Google Scholar]
  14. Steiner I., Spivack J. G., Lirette R. P., Brown S. M., MaClean A. R., Subak-Sharpe J. H., Fraser N. W. 1989; Herpes simplex virus type 1 latency-associated transcripts are evidently not essential for latent infection. EM BO Journal 8:505–511
    [Google Scholar]
  15. Stevens J. G., Wagner E. K., Devi-Rao G. B., Cook M. L., Feldman L. 1987; RNA complementary to a herpes virus alpha gene mRNA is prominent in latently infected neurons. Science 235:1056–1059
    [Google Scholar]
  16. Stevens J. G., Haarr L., Porter D. D., Cook M. L., Wagner E. K. 1988; Prominence of the herpes simplex virus latency- associated transcript in trigeminal ganglia from seropositive humans. Journal of Infectious Diseases 158:117–123
    [Google Scholar]
  17. Wechsler S. L., Nesburn A. B., Watson R., Slanina S. M., Ghiasi H. 1988; Fine mapping of the latency-related gene of herpes simplex virus type 1: alternative splicing produces distinct latency-related RNAs containing open reading frames. Journal of Virology 62:4051–4058
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-4-953
Loading
/content/journal/jgv/10.1099/0022-1317-71-4-953
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error