1887

Abstract

To determine whether heparan sulphate residues on the cellular surface could serve as an attachment receptor for pseudorabies virus (PRV), the effect of heparin on PRV in plaque reduction and adsorption tests was investigated. PRV was significantly less sensitive to heparin than was herpes simplex virus type 1 (HSV-1). At concentrations of 500 µg/ml heparin the number of plaques formed by PRV was reduced to 7 % of the untreated control whereas the number of plaques formed by HSV-1 was reduced to below 0·1%. Adsorption of PRV to host cells was also less sensitive to heparin treatment than was adsorption of HSV-1. Experiments concerning the binding sites of PRV showed that heparin binds to the disulphide-linked glycoprotein complex gII (PRV gB), gIII (PRV gC) and probably gV.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-5-1221
1990-05-01
2024-05-17
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/5/JV0710051221.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-5-1221&mimeType=html&fmt=ahah

References

  1. Cai W., Gu B., Person S. 1988; Role of glycoprotein B of herpes simplex virus type 1 in viral entry and cell fusion. Journal of Virology 62:2596–2604
    [Google Scholar]
  2. Cranage M. P., Kouzarides T., Bankier A. T., Satchwell S., Weston K., Tomlinson P., Barrell B., Hart H., Bell S. E., Minson A. C., Smith G. L. 1986; Identification of the human cytomegalovirus glycoprotein B gene and induction of neutralizing antibodies via its expression in recombinant vaccinia virus. EMBO Journal 5:3057–3063
    [Google Scholar]
  3. Dales S., Silverberg H. 1969; Viropexis of herpes simplex virus by HeLa cells. Virology 37:475–480
    [Google Scholar]
  4. DeLuca N., Bzik D., Person S., Snipes W. 1981; Early events in herpes simplex virus type 1 infection : photosensitivity of fluorescein isothiocyanate-treated virions. Proceedings of the National Academy of Sciences U.S.A.: 78912–916
    [Google Scholar]
  5. Desai P. J., Schaffer P. A., Minson A. C. 1988; Excretion of non-infectious virus particles lacking glycoprotein H by a temperature-sensitive mutant of herpes simplex virus type 1 : evidence that gH is essential for virion infectivity. Journal of General Virology 69:1147–1156
    [Google Scholar]
  6. Emini E. A., Luka J., Armstrong M. E., Keller P. M., Ellis R. W., Pearson G. R. 1987; Identification of an Epstein-Barr virus glycoprotein which is antigenically homologous to the varicella-zoster virus glycoprotein II and the herpes simplex virus glycoprotein B. Virology 157:552–555
    [Google Scholar]
  7. Epstein M. A., Hummeler K., Berkaloff A. 1964; The entry and distribution of herpes simplex virus and colloidal gold in HeLa cells after contact in suspension. Journal of Experimental Medicine 119:291–302
    [Google Scholar]
  8. Fuller A. O., Spear P. G. 1985; Specifities of monoclonal and polyclonal antibodies that inhibit adsorption of herpes simplex virus to cells and lack of inhibition by potent neutralizing antibodies. Journal of Virology 55:475–482
    [Google Scholar]
  9. Hampl H., Ben-Porat T., Ehrlicher L., Habermehl K.-O., Kaplan A. S. 1984; Characterization of the envelope proteins of pseudorabies virus. Journal of Virology 52:583–590
    [Google Scholar]
  10. Highlander S. L., Cai W., Person S., Levine M., Glorioso J. C. 1988; Monoclonal antibodies define a domain on herpes simplex virus glycoprotein B involved in virus penetration. Journal of Virology 62:1881–1888
    [Google Scholar]
  11. Höök M., Kjellén L., Johansson S., Robinson J. 1984; Cell- surface glycosaminoglycans. Annual Review of Biochemistry 53:847–869
    [Google Scholar]
  12. Johnson D. C., Ligas M. W. 1988; Herpes simplex viruses lacking glycoprotein D are unable to inhibit virus penetration : quantitative evidence for virus-specific cell surface receptors. Journal of Virology 62:4605–4612
    [Google Scholar]
  13. Johnson R. M., Spear P. G. 1989; Herpes simplex virus glycoprotein D mediates interference with herpes simplex virus infection. Journal of Virology 63:819–827
    [Google Scholar]
  14. Kessler S. W. 1975; Rapid isolation of antigens from cells with a staphylococcal protein A-antibody adsorbent: parameters of the interaction of antibody-antigen complexes with protein A. Journal of Immunology 119:1617–1624
    [Google Scholar]
  15. Little S. P., Jofre J. T., Courtney R. J., Schaffer P. A. 1980; A virion-associated glycoprotein essential for infectivity of herpes simplex virus type 1. Virology 115:149–160
    [Google Scholar]
  16. Lukàcs N., Thiel H.-J., Mettenleiter T. C., Rziha H.-J. 1985; Demonstration of three major species of pseudorabies virus glycoproteins and identification of a disulfide-linked glycoprotein complex. Journal of Virology 53:166–173
    [Google Scholar]
  17. Meredith D. M., Stocks J.-M., Whittaker G. R., Halliburton I. W., Snowden W., Killington R. A. 1989; Identification of the gB homologues of equine herpesvirus types 1 and 4 as disulphide- linked heterodimers and their characterization using monoclonal antibodies. Journal of General Virology 70:1161–1172
    [Google Scholar]
  18. Misra V., Nelson R., Smith M. 1988; Sequence of a bovine herpesvirus type-1 glycoprotein gene that is homologous to the herpes simplex gene for the glycoprotein gB. Virology 166:542–549
    [Google Scholar]
  19. Morgan C., Rose H. M., Mednis B. 1968; Electron microscopy of herpes simplex virus. I. Entry. Journal of Virology 2:507–516
    [Google Scholar]
  20. O’Farrell P. H. 1975; High resolution two-dimensional electrophoresis of proteins. Journal of Biological Chemistry 250:4007–4021
    [Google Scholar]
  21. Pellett P. E., Biggin M. D., Barrell B., Roizman B. 1985a; Epstein-Barr virus genome may encode a protein showing significant amino acid and predicted secondary structure homology with glycoprotein B of herpes simplex virus 1. Journal of Virology 56:807–813
    [Google Scholar]
  22. Pellett P. E., Kousoulas K. G., Pereira L., Roizman B. 1985b; Anatomy of the herpes simplex virus 1 strain F glycoprotein B gene: primary sequence and predicted protein structure of the wild type and of monoclonal antibody-resistant mutants. Journal of Virology 53:243–253
    [Google Scholar]
  23. Person S., Warner S. C., Bzik D. J., Debroy C., Fox B. A. 1985; Expression in bacteria of gB-glycoprotein-coding sequences of herpes simplex virus type 2. Gene 35:279–287
    [Google Scholar]
  24. Petrovskis E. A., Timmins J. G., Post L. E. 1986; Use of lambda gtl 1 to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins. Journal of Virology 60:185–193
    [Google Scholar]
  25. Robbins A. K., Watson R. J., Whealy M. E., Hays W. W., Enquist L. W. 1986a; Characterization of a pseudorabies virus glycoprotein gene with homology to herpes simplex virus type 1 and type 2 glycoprotein C. Journal of Virology 58:339–347
    [Google Scholar]
  26. Robbins A. K., Whealy M. E., Watson R. J., Enquist L. W. 1986b; Pseudorabies virus gene encoding glycoprotein gill is not essential for growth in tissue culture. Journal of Virology 59:635–645
    [Google Scholar]
  27. Robbins A. K., Dorney D. J., Wathen M. W., Whealy M. E., Gold C., Watson R. J., Holland L. E., Weed S. D., Levine M., Glorioso J. C., Enquist L. W. 1987; The pseudorabies virus gll gene is closely related to the gB glycoprotein gene of herpes simplex virus. Journal of Virology 61:2691–2701
    [Google Scholar]
  28. Rosenthal K. S., Killius J., Hodnichak C. M., Venetta T. M., Gyurgyik L., Janiga K. 1989; Mild acidic pH inhibition of the major pathway of herpes simplex virus entry into HEp-2 cells. Journal of General Virology 70:857–867
    [Google Scholar]
  29. Ross L. J. N., Sanderson M., Scott S. D., Binns M. M., Doel T., Milne B. 1989; Nucleotide sequence and characterization of the Marek’s disease virus homologue of glycoprotein B of herpes simplex virus. Journal of General Virology 70:1789–1804
    [Google Scholar]
  30. Ryan J. P., Whealy M. E., Robbins A. K., Enquist L. W. 1987; Analysis of pseudorabies virus glycoprotein gill localization and modification by using novel infectious viral mutants carrying unique EcoRI sites. Journal of Virology 61:2962–2972
    [Google Scholar]
  31. Sarmiento M., Haffey M., Spear P. G. 1979; Membrane proteins specified by herpes simplex viruses. III. Role of glycoprotein VP7(B2) in virion infectivity. Journal of Virology 29:1149–1158
    [Google Scholar]
  32. Schreurs C., Mettenleiter T. C., Zuckermann F., Sugg N., Ben-Porat T. 1988; Glycoprotein gill of pseudorabies virus is multifunctional. Journal of Virology 62:2251–2257
    [Google Scholar]
  33. Smith J. D., DeHarven E. 1974; Herpes simplex virus and human cytomegalovirus replication in WI-38 cells. IL An ultrastructural study of viral penetration. Journal of Virology 14:945–956
    [Google Scholar]
  34. Wathen M. W., Wathen L. M. K. 1986; Characterization and mapping of a non-essential pseudorabies virus glycoprotein. Journal of Virology 58:173–178
    [Google Scholar]
  35. Whalley J. M., Robertson G. R., Scott N. A., Hudson G. C., Bell C. W., Woodworth L. M. 1989; Identification and nucleotide sequence of a gene in equine herpesvirus 1 analogous to the herpes simplex virus gene encoding the major envelope glycoprotein gB. Journal of General Virology 70:393–394 corrigendum 3513
    [Google Scholar]
  36. Whealy M. E., Robbins A. K., Enquist L. W. 1988; Pseudorabies virus glycoprotein gill is required for efficient virus growth in tissue culture. Journal of Virology 62:2512–2515
    [Google Scholar]
  37. WuDunn D., Spear P. G. 1989; Initial interaction of herpes simplex virus with cells is binding to heparan sulfate. Journal of Virology 63:52–58
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-5-1221
Loading
/content/journal/jgv/10.1099/0022-1317-71-5-1221
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error