1887

Abstract

The nucleotide sequences of cloned cDNA copies of satellite and defective interfering (DI) RNAs of cymbidium ringspot virus were determined. DI RNA is 499 nucleotides long and is composed of six stretches of sequence derived from CyRSV genomic RNA. Four of these stretches share common 5′ sequences and the 5′ and 3′ ends are identical to those of genome RNA. Satellite RNA is 621 nucleotides long. In some regions the sequence is very similar (60% to 100% identical) to genomic RNA. A consensus sequence is proposed to be involved in the replication of genomic, DI and satellite RNAs.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-71-8-1655
1990-08-01
2024-05-11
Loading full text...

Full text loading...

/deliver/fulltext/jgv/71/8/JV0710081655.html?itemId=/content/journal/jgv/10.1099/0022-1317-71-8-1655&mimeType=html&fmt=ahah

References

  1. Burgyan J., Russo M. 1988; Studies on the replication of a satellite RNA associated with cymbidium ringspot virus. Journal of General Virology 69:3089–3092
    [Google Scholar]
  2. Burgyan J., Russo M., Gallitelli D. 1986; Translation of cymbidium ringspot virus RNA in cowpea protoplasts and rabbit reticulocyte lysates. Journal of General Virology 67:1149–1160
    [Google Scholar]
  3. Burgyan J., Grieco F., Russo M. 1989; A defective interfering RNA molecule in cymbidium ringspot virus infections. Journal of General Virology 70:235–239
    [Google Scholar]
  4. Donis-Keller H., Maxam A. M., Gilbert W. 1977; Mapping adenines, guanines and pyrimidines in RNA. Nucleic Acids Research 4:2527–2538
    [Google Scholar]
  5. England T. E., Uhlenbeck O. C. 1978; 3ʹ-Terminal labelling of RNA with T4 RNA ligase. Nature; London: 275560–561
    [Google Scholar]
  6. Francki R. I. B. 1985; Plant virus satellites. Annual Review of Microbiology 39:151–174
    [Google Scholar]
  7. Gallitelli D., Hull R. 1985; Characterization of satellite RNAs associated with tomato bushy stunt virus and five other definitive tombusviruses. Journal of General Virology 66:1533–1543
    [Google Scholar]
  8. Gallitelli D., Hull R., Koenig R. 1985; Relationships among viruses in the tombusvirus group: nucleic acid hybridization studies. Journal of General Virology 66:1523–1531
    [Google Scholar]
  9. Gordon K. H. J., Symons R. H. 1983; Satellite RNA of cucumber mosaic virus forms a secondary structure with partial 3ʹ-terminal homology to genomal RNAs. Nucleic Acids Research 11:947–960
    [Google Scholar]
  10. Grieco F., Burgyan J., Russo M. 1989a; The nucleotide sequence of cymbidium ringspot virus RNA. Nucleic Acids Research 17:6383
    [Google Scholar]
  11. Grieco F., Burgyan J., Russo M. 1989b; Nucleotide sequence of the 3ʹ-terminal region of cymbidium ringspot virus RNA. Journal of General Virology 70:2533–2538
    [Google Scholar]
  12. Gubler V., Hoffman B. J. 1983; A simple and efficient method for generating cDNA libraries. Gene 25:263–269
    [Google Scholar]
  13. Hattori M., Sakaki Y. 1986; Dideoxy sequencing method using denatured plasmid templates. Analytical Biochemistry 152:232–238
    [Google Scholar]
  14. Hillman B. I., Carrington J. C., Morris T. J. 1987; A defective interfering RNA that contains a mosaic of a plant virus genome. Cell 51:427–433
    [Google Scholar]
  15. Kamer C., Argos P. 1984; Primary structural comparison of RNA-dependent polymerases from plant, animal and bacterial viruses. Nucleic Acids Research 12:7269–7283
    [Google Scholar]
  16. Kaper J. M., Collmer C. W. 1988; Modulation of viral plant disease by secondary agents. In RNA Genetics III pp 171–194 Domingo E., Holland J. J., Ahlquist P. Edited by Boca Raton: CRC Press;
    [Google Scholar]
  17. Kaper J. M., Tousignant M. E., Steger G. 1988; Nucleotide sequence predicts circularity and self-cleavage of 300-ribonucleotide satellite of arabis mosaic virus. Biochemical and Biophysical Research Communications 154:318–325
    [Google Scholar]
  18. Lazzarini R. A., Keene J. D., Schubert M:. 1981; The origins of defective interfering particles of the negative-strand RNA viruses. Cell 26:145–154
    [Google Scholar]
  19. Makino S., Shieh C.-K., Soe L. H., Baker S. C., Lai M. M. C. 1988; Primary structure and translation of defective interfering RNA of murine coronavirus. Virology 166:550–560
    [Google Scholar]
  20. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  21. Marck C. 1988; ‘DN A Strider’: a ‘C’ program for the fast analysis of DNA and protein sequences on the Apple Macintosh family of computers. Nucleic Acids Research 16:1829–1836
    [Google Scholar]
  22. Martelli G. P., Russo M., Gallitelli D. 1989; Tombusvirus group. AAB Descriptions of Plant Viruses352
    [Google Scholar]
  23. Maxam A. M., Gilbert W. 1980; Sequencing end-labeled DNA with base-specific chemical cleavages. Methods in Enzymology 65:499–560
    [Google Scholar]
  24. Rochon D., Tremaine J. H. 1989; Complete nucleotide sequence of the cucumber necrosis virus genome. Virology 169:251–259
    [Google Scholar]
  25. Russo M., Burgyan J., Carrington J. C., Hillman B. I., Morris T. J. 1988; Complementary DNA cloning and characterization of cymbidium ringspot virus RNA. Journal of General Virology 69:401–406
    [Google Scholar]
  26. Simon A. E., Howell S. H. 1986; The virulent satellite RNA of turnip crinkle virus has a major domain homologous to the 3ʹ end of the helper virus genome. EMBO Journal 5:3423–3428
    [Google Scholar]
  27. Sippel A. 1973; Purification and characterization of adenosinetri- phosphate: ribonucleic acid adenyl transferase from Escherichia coli. European Journal of Biochemistry 37:31–34
    [Google Scholar]
  28. Tsiang M., Monroe S. S., Schlesinger S. 1985; Studies of defective interfering RNAs with and without tRNAAspsequences at their termini. Journal of Virology 54:38–44
    [Google Scholar]
  29. Wurst R. M., Vournakis J. N., Maxam A. M. 1978; Structure mapping of 5ʹ-32P-labeled RNA with SI nuclease. Biochemistry 17:4493–4499
    [Google Scholar]
  30. Zimmern D., Kaesberg P. 1978; 3ʹ-Terminal nucleotide sequence of encephalomyocarditis virus RNA determined by reverse transcription and chain-terminating inhibitors. Proceedings of the National Academy of Sciences U.S.A.: 754257–4261
    [Google Scholar]
  31. Zuker M., Stiegler P. 1981; Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9:133–148
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-71-8-1655
Loading
/content/journal/jgv/10.1099/0022-1317-71-8-1655
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error