1887

Abstract

A human immunodeficiency virus (HIV) type 1-infected Hut-78 cell clone (F12) shows a peculiar phenotype: it exhibits an altered viral protein pattern, is a non-producer and is resistant to homologous superinfection. To determine whether this phenotype is dependent upon the expression of the HIV-1 genome integrated therein, the I/I F12 provirus [deprived of HIV long terminal repeats (LTRs)] was cloned and inserted in the pLj retroviral vector bearing the neomycin () and Geneticin resistance gene. CD4 HIV-susceptible CEMss cells (a CEM clone able to form large syncytia 2 to 3 days post-HIV infection) were infected with the recombinant retroviruses rescued from the F12/HIV-pLj-transfected (in either sense or antisense orientation) amphotropic packaging cells PA317. sense resistant gene clones showed approximately 10 copies of viral DNA/cell (without detectable major deletions) only in episomal form, low viral RNA expression and a viral protein pattern characterized by an uncleaved gp160, no gp41 and little, if any, p55 precursor (as in F12 cells). Superinfection of these F12/HIV DNA-engineered clones with HIV-1 resulted in a significant reduction in the yield of superinfecting HIV. This effect (more pronounced when the clones were maintained under selective pressure) was observed in all five retrovirus-infected clones exhibiting the presence and expression of sense episomal F12/HIV DNA but not in two clones bearing an antisense F12/HIV DNA or in one clone bearing only the pLj vector. These results indicate that bio-engineered human CD4 cells expressing the F12/HIV genome exhibit a significant resistance to HIV superinfection.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-10-2099
1993-10-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/10/JV0740102099.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-10-2099&mimeType=html&fmt=ahah

References

  1. Adachi A., Gendelman H. E., Koenig S., Folks T., Willey R., Rabson A., Martin M. A. 1986; Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. Journal of Virology 59:284–289
    [Google Scholar]
  2. Carlini F., Federico M., Equestre M., Ricci S., Ratti G., Zibai Q. I., Verani P., Rossi G. B. 1992; Sequence analysis of an HIV-1 pro viral DNA from a non producer chronically infected HUT-78 cellular clone. Journal of Viral Diseases 1:40–55
    [Google Scholar]
  3. Chesebro B., Buller R., Portis J., Wehrly L. 1990; Failure of human immunodeficiency virus entry and infection in CD4-positive human brain and skin cells. Journal of Virology 64:215–221
    [Google Scholar]
  4. Chirgwin J., Przybyla A. M., McDonald A. E., Rutter W. J. 1979; Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299
    [Google Scholar]
  5. Cullen B. R., Greene W. C. 1989; Regulatory pathways governing HIV-1 replication. Cell 58:423–426
    [Google Scholar]
  6. Dingwall C., Ernberg I., Gait M. J., Green S. M., Heaphy S., Karn J., Lowe A. D., Singh M., Skinner M. A., Valerio R. 1989; Human immunodeficiency virus 1 tat protein binds transactivation-responsive region (TAR) RNA in vitro. Proceedings of the National Academy of Sciences, U,. S,. A 86:6925–6929
    [Google Scholar]
  7. Donehower L., Varmus H. 1984; A mutant murine leukemia virus with a single missense codon in pol is defective in a function affecting integration. Proceedings of the National Academy of Sciences, U. S. A 81:6461–6465
    [Google Scholar]
  8. Federico M., Titti F., Butto’ S., Orecchia A., Carlini F., Taddeo B., Macchi B., Maggiano N., Verani P., Rossi G. B. 1989; Biologic and molecular characterization of producer and nonproducer clones from Hut-78 cells infected with a patient HIV isolate. AIDS Research and Human Retroviruses 5:385–396
    [Google Scholar]
  9. Federico M., Taddeo B., Nappi F., Nicolini A., Rossi G. B., Verani P. 1993; Transfection of a retroviral construct carrying a non producer HIV- & variant induces HIV-1 resistance in CD4 + CEMss cells. Journal of Biological Regulators and Homeostatic Agents 1:41–19
    [Google Scholar]
  10. Flanagan J. R., Krieg A. M., Max E. F., Khan A. S. 1989; Negative control region of the 5′ end of murine leukemia virus long terminal repeats. Molecular and Cellular Biology 9:739–746
    [Google Scholar]
  11. Folks T. M., Powell D., Lightfoote M., Koenig S., Fauci A. S., Bbnn S., Rabson A., Daugherty D., Gendelman H. E., Hoggan M. D., Venkatesan S., Martin M. A. 1986; Biological and biochemical characterization of a cloned Leu-3-cell surviving infection with an acquired immunodeficiency syndrome retrovirus. Journal of Experimental Medicine 164:280–290
    [Google Scholar]
  12. Gatignol A., Kumar A., Rabson A., Jeang K. T. 1989; Identification of cellular proteins that bind to the immunodeficiency virus type 1 trans-activation-responsive TAR element RNA. Proceedings of the National Academy of Sciences, U. S. A 86:7828–7832
    [Google Scholar]
  13. Hart A. R., Cloyd M. W. 1990; Interference patterns of human immunodeficiency viruses HIV-1 and HIV-2. Virology 177:1–10
    [Google Scholar]
  14. Ikeuchi K., Kim S., Byrn R. A., Goldring S. R., Groopman J. E. 1990; Infection of nonlymphoid cells by human immunodeficiency virus type 1 or type 2. Journal of Virology 64:4226–4231
    [Google Scholar]
  15. Korman A. J., Frantz J. D., Strominger J. L., Mulligan R. C. 1987; Expression of human class II major histocompatibility complex antigens using retrovirus vectors. Proceedings of the National Academy of Sciences, U. S. A. 84:2150–2154
    [Google Scholar]
  16. Le Guern M., Levy J. A. 1992; Human immunodeficiency virus (HIV) type 1 can superinfect HIV-2-infected cells: pseudotype virions produced with expanded cellular host range. Proceedings of the National Academy of Sciences, U. S. A. 89:363–367
    [Google Scholar]
  17. Li X. L., Moudgil T., Vinters H. V., Ho D. D. 1990; CD4-independent, productive infection of a neuronal cell line by human immunodeficiency virus type 1. Journal of Virology 64:1383–1387
    [Google Scholar]
  18. Maddon P. J., Dalgleish A. G., McDougal J. S., Clapham P. R., Weiss R. A., Axell R. 1986; The T4 gene encodes the AIDS virus receptor and is expressed in the immune system and the brain. Cell 47:333–348
    [Google Scholar]
  19. Maniatis T., Fritsch E. F., Sambrook J. 1982 Molecular Cloning: A Laboratory Manual New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Miller A. D., Buttimore C. 1986; Redesign of retrovirus packaging cell lines to avoid recombinant leading to helper virus production. Molecular and Cellular Biology 6:2895–2902
    [Google Scholar]
  21. Mirakhur B., Peluso R. W. 1988; In vitro assembly of a functional nucleocapsid from the negative-stranded genome RNA of a defective interfering particle of vesicular stomatitis virus. Proceedings of the National Academy of Sciences, U. S. A. 85:7511–7515
    [Google Scholar]
  22. Omer C. A., Pogue-Geile K., Guntaka R., Staskus K. A., Faras A. J. 1983; Involvement of directly repeated sequences in the generation of deletions of the avian sarcoma virus src gene. Journal of Virology 47:380–382
    [Google Scholar]
  23. Ou C. Y., Kwok S., Mitchell S. W., Mack D. H., Sninsky J. J., Kress J. W., Feorino P., Warfield D., Schoocherman G. 1988; DNA amplification for direct detection of HIV-1 in DNA of peripheral blood mononuclear cells. Science 239:295–297
    [Google Scholar]
  24. Peluso R. W., Moyer S. A. 1988; Viral proteins required for the in vitro replication of vesicular stomatitis virus defective interfering particle genome RNA. Virology 162:369–376
    [Google Scholar]
  25. Pescador R. S., Power M. D., Barr P. J., Steimer K. S., Stempien M. M., Brown-Shimmer S. L., Gee W. W., Randolph A. R. A., Levy J. A., Dina D., Luciw P. A. 1985; Nucleotide sequence and expression of an AIDS-associated retrovirus (ARV-2). Science 227:484–492
    [Google Scholar]
  26. Ratner L., Haseltine W., Patarca R., Livak K. J., Starcich B., Josephs S. F., Doran E. R., Rafalski J. A., Whitehorn E. A., Baumeister K., Ivanoff L., Petteway S. R. Jr, Pearson M. L., Lautenberger J. A., Papas T. S., Ghrayeb J., Chang N. T., Gallo R. C., Wong-Staal F. 1985; Complete nucleotide sequence of the AIDS virus, HTLV-III. Nature, London 313:277–281
    [Google Scholar]
  27. Rossi G. B., Verani P., Macchi B., Federico M., Orecchia A., Nicoletti L., Butto’ S., Lazzarin A., Mariani G., Ippolito G., Manzari V. 1988; Recovery of HIV-related retroviruses from Italian patients with AIDS or AIDS-related complex and from asymptomatic at-risk individuals. Annals of the New York Academy of Science 511:390–400
    [Google Scholar]
  28. Schwartzberg P., Colicelli J., Goff S. 1984; Construction and analysis of deletion mutations in the pol gene of Moloney murine leukemia virus: a new viral function required for productive infection. Cell 37:1043–1052
    [Google Scholar]
  29. Sharp P. A., Marciniak R. A. 1989; HIV-TAR: an RNA enhancer?. Cell 59:229–230
    [Google Scholar]
  30. Shimotohno K., Temin H. M. 1982; Spontaneous variation and synthesis in the U3 region of the long terminal repeat of an avian retrovirus. Journal of Virology 41:163–171
    [Google Scholar]
  31. Srinivasan A., York D., Butler D. Jr, Jannoun-Nasr R., Getchell J., McCormick J., Ou C. Y., Myers G., Smith T., Chen E., Flaggs G., Berman P., Schochetman G., Kalyanaraman S. 1989; Molecular characterization of HIV-1 isolated from a serum in 1976: nucleotide sequence comparison to recent isolates and generation of hybrid HIV. AIDS Research and Human Retroviruses 5:121–129
    [Google Scholar]
  32. Stamminger G., Lazzarini R. 1989; Analysis of the RNA of defective VSV particles. Cell 3:85–93
    [Google Scholar]
  33. Stevenson M., Meier C., Mann A. M., Chapman N., Waslak A. 1989; Envelope glycoprotein of HIV induces interference and cytolysis resistance in CD4+ cells: mechanism for persistence in AIDS. Cell 83:483–186
    [Google Scholar]
  34. Stevenson M., Haggerty S., Lamonica C. A., Meier C. M., Welch S. K., Wasiak A. J. 1990; Integration is not necessary for expression of human immunodeficiency virus type 1 protein products. Journal of Virology 64:2421–2425
    [Google Scholar]
  35. Taddeo B., Federico M., Titti F., Rossi G. B., Verani P. 1993; Homologous superinfection of both producer and non producer HIV-infected cells is blocked at a late retrotranscription step. Virology 194:441–452
    [Google Scholar]
  36. Trono D., Feinberg M. B., Baltimore D. 1989; HIV-1 gag mutants can dominantly interfere with the replication of the wild-type virus. Cell 59:113–120
    [Google Scholar]
  37. Wain-Hobson S., Sonigo P., Danos O., Cole S., Alizon M. 1985; Nucleotide sequence of the AIDS virus, LAV. Cell 40:9–17
    [Google Scholar]
  38. Wigler M., Sweet R., Sim G. K., Wold B., Pellicer A., Lacy E., Maniatis T., Silverstein S., Awel R. 1979; Transformation of mammalian cells with genes from procaryotes and eucaryotes. Cell 16:758–777
    [Google Scholar]
  39. Wrischnik L. A., Higuchi R. G., Stoneiking M., Erlich H. A., Arnheim N., Wilson A. C. 1987; Length mutations in human mitochondrial DNA: direct sequencing of enzymatically amplified DNA. Nucleic Acids Research 14:529–542
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-10-2099
Loading
/content/journal/jgv/10.1099/0022-1317-74-10-2099
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error