1887

Abstract

The DNA sequence of the whole of the short unique region (U) and that of part of the short terminal repeat (TR) of herpesvirus of turkeys (HVT) were determined. HVT U is 8.6 kbp long and contains eight potential open reading frames (ORFs). Seven of these have counterparts in the U of herpes simplex virus type 1 (HSV-1). The homologous proteins include US1, US2, US10, protein kinase (US3) and the glycoproteins gD, gI and gE. In addition, HVT contains one ORF which has a counterpart in the U of Marek’s disease virus (MDV) but is not homologous to any other known herpesvirus gene. Although HVT and MDV proteins encoded by U genes have evident similarities with proteins encoded by alphaherpesviruses, multiple alignment analysis of predicted amino acid sequences show that HVT proteins are more closely related to MDV proteins than to homologous proteins of mammalian alphaherpesviruses. The percentage amino acid identity between HVT and MDV U-encoded proteins ranges from 35 to 65, the most conserved protein being encoded by the homologues of the HSV-1 US2 gene. Most of the genes are collinear with those of HSV-1 except US10 which is transposed in HVT and MDV. A characteristic feature of HVT is the fact that approximately two-thirds of the gE gene is located in the inverted repeats flanking U.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-10-2151
1993-10-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/10/JV0740102151.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-10-2151&mimeType=html&fmt=ahah

References

  1. Audonnet J.-C., Winslow J., Allen G., Paoletti E. 1990; Equine herpesvirus type 1 unique short fragment encodes glycoproteins with homology to herpes simplex virus type 1 gD, gl and gE. Journal of General Virology 71:2969–2978
    [Google Scholar]
  2. Bairoch A., Claverie J.-M. 1988; Sequence patterns in protein kinases. Nature, London 331:22
    [Google Scholar]
  3. Bause E. 1983; Structural requirements of IV-glycosylation of proteins. Biochemical Journal 209:331–336
    [Google Scholar]
  4. Bell S., Cranage M., Borysiewicz L., Minson T. 1990; Induction of immunoglobulin G Fc receptors by recombinant vaccinia viruses expressing glycoproteins E and I of herpes simplex virus type 1. Journal of Virology 64:2181–2186
    [Google Scholar]
  5. Brunovskis P., Velicer L. F. 1992; Genetic organization of the Marek’s disease virus unique short region and identification of Us-encoded polypeptides. Proceedings of 19th World’s Poultry Congress vol 1 pp 74–78 Wageningen: Ponsen & Looijen;
    [Google Scholar]
  6. Buckmaster A. E., Scott S. D., Sanderson M. J., Boursnell M. E. G., Ross L. J. N., Binns M. M. 1988; Gene sequence and mapping data from Marek’s disease virus and herpesvirus of turkeys: implications for herpesvirus classification. Journal of General Virology 69:2033–2042
    [Google Scholar]
  7. Campadelli-Fiume G., Arsenakis M., Farabegoli F., Roizman B. 1988; Entry of herpes simplex virus 1 in BJ cells that constitutively express viral glycoprotein D is by endocytosis and results in degradation of the virus. Journal of Virology 62:159–167
    [Google Scholar]
  8. Cantello J. L., Anderson A. S., Francesconi A., Morgan R. W. 1991; Isolation of a Marek’s disease virus (MDV) recombinant containing the lacZ gene of Escherichia coli stably inserted within the MDV US2 gene. Journal of Virology 65:1584–1588
    [Google Scholar]
  9. Cebrian J., Kaschka-Dierich C., Berthelot N., Sheldrick P. 1982; Inverted repeat nucleotide sequences in the genomes of Marek disease virus and the herpesvirus of the turkey. Proceedings of the National Academy of Sciences, U.S.A 79:555–558
    [Google Scholar]
  10. Cohen G. H., Katze M., FIydrean-Stern C., Eisenberg R. J. 1978; Type-common CP-I antigen of herpes simplex virus is associated with a 59000-molecular-weight envelope glycoprotein. Journal of Virology 27:172–181
    [Google Scholar]
  11. Cullinane A. A., Rixon F. J., Davison A. J. 1988; Characterization of the genome of equine herpesvirus 1 subtype 2. Journal of General Virology 69:1575–1590
    [Google Scholar]
  12. Davison A. J., McGeoch D. J. 1986; Evolutionary comparisons of the S segments in the genomes of herpes simplex virus type 1 and varicella-zoster virus. Journal of General Virology 67:597–611
    [Google Scholar]
  13. Davison A. J., Scott J. E. 1986; The complete DNA sequence of varicella-zoster virus. Journal of General Virology 67:1759–1816
    [Google Scholar]
  14. Devereux J., Haeberli P., Smithies O. 1984; A comprehensive set of sequence analysis programs for the VAX. Nucleic Acids Research 12:387–395
    [Google Scholar]
  15. de Wind N., Zijderveld A., Glazenburg K., Gielkens A., Berns A. 1990; Linker insertion mutagenesis of herpesviruses: inactivation of single genes within the Us region of pseudorabies virus. Journal of Virology 64:4691–4696
    [Google Scholar]
  16. Fehler F., Herrmann J. M., Saalmuller A., Mettenleiter T. C., Keil G. M. 1992; Glycoprotein IV of bovine herpesvirus 1-expressing cell line complements and rescues a conditionally lethal viral mutant. Journal of Virology 66:831–839
    [Google Scholar]
  17. Frame M. C., Purves F. C., McGeoch D. J., Marsden H. S., Leader D. P. 1987; Identification of the herpes simplex virus protein kinase as the product of viral gene US3. Journal of General Virology 68:2699–2704
    [Google Scholar]
  18. Fukuchi K., Sudo M., Lee Y.-S., Tanaka A., Nonoyama M. 1984; Structure of Marek’s disease virus DNA: detailed restriction enzyme map. Journal of Virology 51:102–109
    [Google Scholar]
  19. Fuller A. O., Spear P. G. 1987; Anti-glycoprotein D antibodies that permit adsorption but block infection by herpes simplex virus 1 prevent virion-cell fusion at the cell surface. Proceedings of the National Academy of Sciences, U.S.A 84:5454–5458
    [Google Scholar]
  20. Gibbs C. P., Nazerian K., Velicer L. F., Kung H.-J. 1984; Extensive homology exists between Marek’s disease herpesvirus and its vaccine virus, herpesvirus of turkeys. Proceedings of the National Academy of Sciences, U.S.A 81:3365–3369
    [Google Scholar]
  21. Higgins D. G., Sharp P. M. 1988; CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. Gene 73:237–244
    [Google Scholar]
  22. Hirai K., Sakaguchi M., Maeda H., Kino Y., Nakamura H., Zhu G.-S., Yamamoto M. 1992; Construction of recombinant Marek’s disease virus type 1 expressing the Lac Z gene of Escherichia coli. Proceedings of 19th World’s Poultry Congress vol 1 pp 150–155 Wageningen: Ponsen & Looijen;
    [Google Scholar]
  23. Hodgman T. C., Minson A. C. 1986; The herpes simplex virus type 2 equivalent of the herpes simplex virus type 1 US7 gene and its flanking sequences. Virology 153:1–11
    [Google Scholar]
  24. Igarashi T., Takahashi M., Donovan J., Jessip J., Smith M., Hirai K., Tanaka A., Nonoyama M. 1987; Restriction enzyme map of herpesvirus of turkey DNA and its collinear relationship with Marek’s disease virus DNA. Virology 157:351–358
    [Google Scholar]
  25. Johnson D. C., Frame M. C., Ligas M. W., Cross A. E., Stow N. D. 1988; Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gl. Journal of Virology 62:1347–1354
    [Google Scholar]
  26. Kimman T. G., de Wind N., Oei-Lie N., Pol J. M. A., Berns A. J. M., Gielkens A. L. J. 1992; Contribution of single genes within the unique short region of Aujeszky’s disease virus (suid herpesvirus type 1) to virulence, pathogenesis and immunogenicity. Journal of General Virology 73:243–251
    [Google Scholar]
  27. Longnecker R., Roizman B. 1987; Clustering of genes dispensable for growth in culture in the S component of the HSV-1 genome. Science 236:573–576
    [Google Scholar]
  28. McGeoch D. J., Davison A. J. 1986; Alphaherpesviruses possess a gene homologous to the protein kinase gene family of eukaryotes and retroviruses. Nucleic Acids Research 14:1765–1778
    [Google Scholar]
  29. McGeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  30. McGeoch D. J., Moss H. W. M., McNab D., Frame M. C. 1987; DNA sequence and genetic content of the Hin dIII l region in the short unique component of the herpes simplex virus type 2 genome: identification of the gene encoding glycoprotein G, and evolutionary comparisons. Journal of General Virology 68:19–38
    [Google Scholar]
  31. Meignier B., Longnecker R., Mavromara-Nazos P., Sears A. E., Roizman B. 1988; Virulence of and establishment of latency by genetically engineered deletion mutants of herpes simplex virus 1. Virology 162:251–254
    [Google Scholar]
  32. Para M. F., Parish M. L., Noble A. G., Spear P. G. 1985; Potent neutralizing activity associated with anti-glycoprotein D specificity among monoclonal antibodies selected for binding to herpes simplex virions. Journal of Virology 55:483–488
    [Google Scholar]
  33. Payne L. N. 1985; Marek’s Disease: Scientific Basis and Methods of Control. Boston: Martinus Nijhoff
    [Google Scholar]
  34. Peeters B., de Wind N., Hooisma M., Wagenaar F., Gielkens A., Moormann R. 1992; Pseudorabies virus envelope glycoproteins gp50 and gll are essential for virus penetration, but only gll is involved in membrane fusion. Journal of Virology 66:894–905
    [Google Scholar]
  35. Petrovskis E. A., Timmins J. G., Armentrout M. A., Marchioli C. C., Yancey R. J., Post L. E. 1986a; DNA sequence of the gene for pseudorabies virus gp50, a glycoprotein without A-linked glycosylation. Journal of Virology 59:216–223
    [Google Scholar]
  36. Petrovskis E. A., Timmins J. G., Post L. E. 1986b; Use of λ gtl l to isolate genes for two pseudorabies virus glycoproteins with homology to herpes simplex virus and varicella-zoster virus glycoproteins. Journal of Virology 60:185–193
    [Google Scholar]
  37. Purves F. C., Longnecker R. M., Leader D. P., Roizman B. 1987; Herpes simplex virus 1 protein kinase is encoded by open reading frame Us3 which is not essential for virus growth in cell culture. Journal of Virology 61:2896–2901
    [Google Scholar]
  38. Purves F. C., Spector D., Roizman B. 1991; The herpes simplex virus 1 protein kinase encoded by the Us3 gene mediates posttranslational modification of the phosphoprotein encoded by the UL34 gene. Journal of Virology 65:5757–5764
    [Google Scholar]
  39. Rauh I., Mettenleiter T. C. 1991; Pseudorabies virus glycoproteins gll and gp50 are essential for virus penetration. Journal of Virology 65:5348–5356
    [Google Scholar]
  40. Roizman B. 1982; The family herpesviridae: general description, taxonomy, and classification. In The Herpesviruses vol 1 pp 1–23 Edited by Roizman B. New York: Plenum Press;
    [Google Scholar]
  41. Roizman B. 1992; The family Herpesviridae:. an update. Archives of Virology 123:425–149
    [Google Scholar]
  42. Ross L. J. N., Binns M. M. 1991; Properties and evolutionary relationships of the Marek’s disease virus homologues of protein kinase, glycoprotein D and glycoprotein I of herpes simplex virus. Journal of General Virology 72:939–947
    [Google Scholar]
  43. Ross L. J. N., Binns M. M., Pastorek J. 1991; DNA sequence and organization of genes in a 5.5 kbp iscoRI fragment mapping in the short unique segment of Marek’s disease virus (strain RB1B). Journal of General Virology 72:949–954
    [Google Scholar]
  44. Ross L. J. N., Binns M. M., Tyers P., Pastorek J., Zelník V., Scott S. 1992; Construction and properties of a herpesvirus of turkeys recombinant expressing the Marek’s disease virus homologue of glycoprotein B (gB) of herpes simplex virus. Proceedings of 19th World’s Poultry Congress vol 1 pp 144–149 Wageningen: Ponsen & Looijen;
    [Google Scholar]
  45. Sakaguchi M., Urakawa T., Hirayama Y., Miki N., Yamamoto M., Hirai K. 1992; Sequence determination and genetic content of an 8.9 kbp restriction fragment in the short unique region and in the internal inverted repeat of Marek’s disease virus type 1 DNA. Virus Genes 6:365–378
    [Google Scholar]
  46. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning A Laboratory Manual 2nd edn New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  47. Sears A. E., Halliburton I. W., Meignier B., Silver S., Roizman B. 1985; Herpes simplex virus 1 mutant deleted in the a22 gene: growth and gene expression in permissive and restrictive cells and establishment of latency in mice. Journal of Virology 55:338–346
    [Google Scholar]
  48. Sharp P. M., Lloyd A. T., Higgins D. G. 1991; Coelacanth’s relationships. Nature, London 353:218–219
    [Google Scholar]
  49. Sullivan V., Smith G. L. 1988; The herpes simplex virus type 1 US7 gene product is a 66K glycoprotein and is a target for complement-dependent virus neutralization. Journal of General Virology 69:859–867
    [Google Scholar]
  50. Telford E. A. R., Watson M. S., McBride K., Davison A. J. 1992; The DNA sequence of equine herpesvirus-1. Virology 189:304–316
    [Google Scholar]
  51. Tikoo S. K., Fitzpatrick D. R., Babiuk L. A., Zamb T. J. 1990; Molecular cloning, sequencing, and expression of functional bovine herpesvirus 1 glycoprotein gIV in transfected bovine cells. Journal of Virology 64:5132–5142
    [Google Scholar]
  52. Tomley F., Binns M., Campbell J., Boursnell M. 1988; Sequence analysis of an 11.2 kilobase, near-terminal, Bam HI fragment of fowlpox virus. Journal of General Virology 69:1025–1040
    [Google Scholar]
  53. Velicer L. F., Brunovskis P., Coussens P. M. 1992; Marek’s disease herpesvirus DNA segment encoding glycoproteins gD, gl and gE. International Patent Publication no. PCT/US91/05870
    [Google Scholar]
  54. Watson R. J., Weis J. H., Salstrom J. S., Enquist L. W. 1982; Herpes simplex virus type-1 glycoprotein D gene: nucleotide sequence and expression in Escherichia coli. Science 218:381–383
    [Google Scholar]
  55. Whittaker G. R., Taylor L. A., Elton D. M., Giles L. E., Bonass W. A., Halliburton I. W., Killington R. A., Meredith D. M. 1992; Glycoprotein 60 of equine herpesvirus type 1 is a homologue of herpes simplex virus glycoprotein D and plays a major role in penetration of cells. Journal of General Virology 73:801–809
    [Google Scholar]
  56. Wickens M. 1990; How the messenger got its tail: addition of poly(A) in the nucleus. Trends in Biochemical Sciences 15:277–281
    [Google Scholar]
  57. Witter R. L., Nazerian K., Purchase H. G., Burgoyne G. H. 1970; Isolation from turkeys of a cell-associated herpesvirus antigenically related to Marek’s disease virus. American Journal of Veterinary Research 31:525–538
    [Google Scholar]
  58. Zhang G., Leader D. P. 1990; The structure of the pseudorabies virus genome at the end of the inverted repeat sequences proximal to the junction with the short unique region. Journal of General Virology 71:2433–2441
    [Google Scholar]
  59. Zhang G., Stevens R., Leader D. P. 1990; The protein kinase encoded in the short unique region of pseudorabies virus: description of the gene and identification of its product in virions and in infected cells. Journal of General Virology 71:1757–1765
    [Google Scholar]
  60. Zsak L., Zuckermann F., Sugg N., Ben-Porat T. 1992; Glycoprotein gl of pseudorabies virus promotes cell fusion and virus spread via direct cell-to-cell transmission. Journal of Virology 66:2316–2325
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-10-2151
Loading
/content/journal/jgv/10.1099/0022-1317-74-10-2151
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error