1887

Abstract

Papillomaviruses are believed to play an important role in the development of genital carcinoma. Herpes simplex virus (HSV) has been proposed as a cofactor. Here we show that HSV-1 interferes with the expression of human papillomavirus (HPV-18) genes in HeLa cells by reducing the amount of papillomaviral mRNA. By 7 h after HSV-1 infection, expression was reduced by a factor of 50. Experiments with the HSV-1 mutant K, with cycloheximide and with u.v.-irradiated virus indicated that the reduction was not due to newly made immediate early, early or late HSV-1 gene products but rather to a component of the virion. Replication of the HSV-1 is therefore not required for the reduction of the HPV-18 mRNA. The HSV-1 strain 17, which has only a very weak virion host shutoff function, still specifically decreased the level of the papillomaviral mRNA suggesting that either the decrease is due to a new HSV-1 function or that the HPV-18 mRNA is especially sensitive to the low residual host shutoff activity of strain 17. Experiments with the virus 17(41), in which the host shutoff function is inactivated by a mutation in the UL41 gene, showed clearly that it is the host shutoff function which is responsible. The papillomaviral mRNA therefore appears to be hypersensitive to the herpesvirus host shutoff function.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-74-6-965
1993-06-01
2024-05-02
Loading full text...

Full text loading...

/deliver/fulltext/jgv/74/6/JV0740060965.html?itemId=/content/journal/jgv/10.1099/0022-1317-74-6-965&mimeType=html&fmt=ahah

References

  1. Baker C. C., Phelps W. C., Lindgreen V., Braun M. L., Gonda M. A., Howley P. M. 1987; Structural and transcriptional analysis of human papillomavirus type 16 sequences in cervical carcinoma cell lines. Journal of Virology 61:962–971
    [Google Scholar]
  2. Brawerman G. 1989; mRNA decay: finding the right targets. Cell 57:9–10
    [Google Scholar]
  3. Brown S. M., Ritchie D. A., Subak-Sharpe J. H. 1973; Genetic studies with herpes simplex virus type 1. The isolation of temperature-sensitive mutants, their arrangement into complementation groups and recombination analysis leading to a linkage map. Journal of General Virology 18:329–346
    [Google Scholar]
  4. Camacho A., Spear P. G. 1978; Transformation of hamster embryo fibroblasts by a specific fragment of the herpes simplex virus genome. Cell 15:993–1002
    [Google Scholar]
  5. Crook T., Tidy J. A., Vousden K. H. 1991; Degradation of p53 can be targeted by HPV E6 sequences distinct from those required for p53 binding and trans-activation. Cell 67:547–556
    [Google Scholar]
  6. de Villiers E. M. 1989; Heterogeneity of the human papillomavirus group. Journal of Virology 63:4898–4903
    [Google Scholar]
  7. de Villiers E. M., Schneider A., Miklaw H., Papendick U., Wagner D., Wesh H., Wahrendorf J., zur Hausen H. 1987; Human papillomavirus infections in women with and without abnormal cervical cytology. Lancet ii:703–706
    [Google Scholar]
  8. DiPaolo J. A., Woodworth C. D., Popescu N. C., Koval D. L., Lopez J. V., Doniger J. 1990; HSV-2-induced tumorigenicity in HPV16-immortalized human genital keratinocytes. Virology 111:777–779
    [Google Scholar]
  9. Dyson N., Howley P. M., Munger K., Harlow E. 1989; The human papillomavirus-16 E7 oncoprotein is able to bind to the retinoblastoma gene product. Science 234:934–937
    [Google Scholar]
  10. Fenwick M. 1984; The effects of herpesviruses on cellular macromolecule synthesis. In Comprehensive Virology vol. 19 pp. 359–390 Edited by Fraenkel-Konrat H., Wagner R. R. New York: Plenum Press;
    [Google Scholar]
  11. Fenwick M. L., Everett R. D. 1990a; Transfer of UL41, the gene controlling virion-associated host cell shutoff, between different strains of herpes simplex virus. Journal of General Virology 71:411–418
    [Google Scholar]
  12. Fenwick M. L., Everett R. D. 1990b; Inactivation of the shutoff gene (UL41) of herpes simplex virus types 1 and 2. Journal of General Virology 71:2961–2967
    [Google Scholar]
  13. Fenwick M. L., Owen S. A. 1988; On the control of immediate early (α) mRNA survival in cells infected with herpes simplex virus. Journal of General Virology 69:2869–2877
    [Google Scholar]
  14. Fenwick M. L., Walker M. J. 1978; Suppression of the synthesis of cellular macromolecules by herpes simplex virus. Journal of General Virology 41:37–51
    [Google Scholar]
  15. Fort P. H., Piechaczyk M., El Sabrouti S., Dani C., Jeanteur P., Blanchard J. M. 1985; Various rat adult tissues express only one major mRNA species from the glyceraldehyde-3-phosphate-dehydrogenase multigenic family. Nucleic Acids Research 13:1431–1442
    [Google Scholar]
  16. Furth P. A., Baker C. C. 1991; An element in the bovine papillomavirus late 3′ untranslated region reduces polyadenylated cytoplasmic RNA levels. Journal of Virology 65:5806–5812
    [Google Scholar]
  17. Galloway D. A., McDougall J. K. 1981; Transformation of rodent cells by a cloned DNA fragment of herpes simplex virus type 2. Journal of Virology 38:749–760
    [Google Scholar]
  18. Galloway D. A., McDougall J. K. 1983; The oncogenic potential of herpes simplex virus: evidence for a “hit-and-run” mechanism. Nature, London 302:21–24
    [Google Scholar]
  19. Gius D., Laimins L. A. 1989; Activation of human papillomavirus type 18 gene expression by herpes simplex virus type 1 viral transactivators and a phorbol ester. Journal of Virology 63:555–563
    [Google Scholar]
  20. Hawley-Nelson P., Vousden K. H., Hubbert N. L., Lowy D. R., Schiller J. T. 1989; HPV16 E6 and E7 proteins cooperate to immortalize human foreskin keratinocytes. EMBO Journal 8:3905–3910
    [Google Scholar]
  21. Heck D. V., Yee C. L., Howley P. M., Munger K. 1992; Efficiency of binding the retinoblastoma protein correlates with the transforming capacity of the E7 oncoproteins of the human papillomaviruses. Proceedings of the National Academy of Sciences, U.S.A. 89:4442–1446
    [Google Scholar]
  22. Hildesheim A., Mann V., Brinton L. A., Szklo M., Reeves W. C., Rawls W. E. 1991; Herpes simplex virus type 2: a possible interaction with human papillomavirus types 16/18 in the development of invasive cervical cancer. International Journal of Cancer 49:335–340
    [Google Scholar]
  23. Hill T. M., Sadler J. R., Betz J. L. 1985; Virion component of herpes simplex virus type 1 KOS interferes with early shutoff of host protein synthesis induced by herpes simplex virus type 2 186. Journal of Virology 56:312–316
    [Google Scholar]
  24. Howley P. M. 1991; Role of the human papillomaviruses in human cancer. Cancer Research 51:5019–5022
    [Google Scholar]
  25. Hurlin P. J., Kaur P., Smith P. P., Perez-Neyz N., Blanton R. A., McDougall J. K. 1991; Progression of human papillomavirus type 18-immortalized human keratinocytes to a malignant phenotype. Proceedings of the National Academy of Sciences, U.S.A. 88:570–574
    [Google Scholar]
  26. Inagaki Y., Tsunokawa Y., Takebe I. S., Nawa H., Nakanishi S., Terada M., Sugimura T. 1988; Nucleotide sequences of cDNAs for human papillomavirus type 18 transcripts in HeLa cells. Journal of Virology 62:1640–1646
    [Google Scholar]
  27. Jackson R. J., Stand art N. 1990; Do the poly(A) tail and 3′ untranslated region control mRNA translation. Cell 62:15–24
    [Google Scholar]
  28. Kabnick K. S., Housman D. E. 1988; Determinants that contribute to cytoplasmic stability of human c-fos and β-globin mRNAs are located at several sites in each mRNA. Molecular and Cellular Biology 8:3244–3250
    [Google Scholar]
  29. Kennedy I. M., Haddow J. K., Clements J. B. 1991; A negative regulatory element in the human papillomavirus type 16 genome acts at the level of late mRNA stability. Journal of Virology 65:2093–2097
    [Google Scholar]
  30. Krikorian C. R., Read G. S. 1991; In vitro mRNA degradation system to study the virion host shutoff function of herpes simplex virus. Journal of Virology 65:112–122
    [Google Scholar]
  31. Kwong A. D., Frenkel N. 1987; Herpes simplex virus-infected cells contain a function(s) that destabilizes both host and viral mRNAs. Proceedings of the National Academy of Sciences, U.S.A. 84:1926–1930
    [Google Scholar]
  32. Kwong A. D., Kruper J. A., Frenkel N. 1988; Herpes simplex virus virion host shutoff function. Journal of Virology 62:912–921
    [Google Scholar]
  33. Lechner M. S., Mack D. H., Finicle A. B., Crook T., Vousden K. H., Laimins L. A. 1992; Human papillomavirus E6 proteins bind p53 in vivo and abrogate p53-mediated repression of transcription. EMBO Journal 11:3045–3052
    [Google Scholar]
  34. Mayman B. A., Nishioka Y. 1985; Differential stability of host mRNAs in Friend erythroleukemia cells infected with herpes simplex virus type 1. Journal of Virology 53:1–6
    [Google Scholar]
  35. McCusker C. T., Bacchetti S. 1988; The responsiveness of human papillomavirus upstream regulatory region to herpes simplex virus immediate early proteins. Virus Research 11:199–207
    [Google Scholar]
  36. Melton D. A., Krieg P. A., Rebagliati M. R., Maniatis T., Zinn K., Green M. R. 1984; Efficient in vitro synthesis of biologically active RNA and RNA hybridization probes from plasmids containing a bacteriophage SP6 promoter. Nucleic Acids Research 12:7035–7056
    [Google Scholar]
  37. Münger K., Phelps W. C., Bubb V., Howley P. M., Schlegel R. 1989; The E6 and E7 genes of the human papillomavirus type 16 together are necessary and sufficient for transformation of primary human keratinocytes. Journal of Virology 63:4417–4421
    [Google Scholar]
  38. Nishioka Y., Silverstein S. 1977; Degradation of cellular mRNA during infection by herpes simplex virus. Proceedings of the National Academy of Sciences, U.S.A. 74:2370–2374
    [Google Scholar]
  39. Nishioka Y., Silverstein S. 1978; Alterations in the protein synthetic apparatus of Friend erythroleukemia cells infected with vesicular stomatitis virus or herpes simplex virus. Journal of Virology 25:422–126
    [Google Scholar]
  40. O’Hare P., Hayward G. S. 1985; Three trans-acting regulatory proteins of herpes simplex virus modulate immediate-early gene expression in a pathway involving positive and negative feedback regulation. Journal of Virology 56:723–733
    [Google Scholar]
  41. Oroskar A. A., Read G. S. 1987; A mutant of herpes simplex virus type 1 exhibits increased stability of immediate-early (alpha) mRNAs. Journal of Virology 61:604–606
    [Google Scholar]
  42. Oroskar A. A., Read G. S. 1989; Control of mRNA stability by the virion host shutoff function of herpes simplex virus. Journal of Virology 63:1897–1906
    [Google Scholar]
  43. Ostrove J. M., Leonard J., Weck K. E., Rabson A. B., Gendelman H. E. 1987; Activation of the human immunodeficiency virus by herpes simplex virus type 1. Journal of Virology 61:3726–3732
    [Google Scholar]
  44. Pizer L. I., Beard P. 1976; The effects of herpes virus infection on mRNA in polyoma virus-transformed cells. Virology 75:477–480
    [Google Scholar]
  45. Prakash S. S., Reeves W. C., Sisson G. R., Brenes M., Godoy J., Baccheti S., de Britton R. C., Rawls W. E. 1985; Herpes simplex virus type 2 and human papillomavirus type 16 in cervicitis, dysplasia and invasive cervical carcinoma. International Journal of Cancer 35:51–57
    [Google Scholar]
  46. Read G. S., Frenkel N. 1983; Herpes simplex virus mutants defective in the virion-associated shutoff of host polypeptide synthesis and exhibiting abnormal synthesis of alpha (immediate early) viral polypeptides. Journal of Virology 46:498–512
    [Google Scholar]
  47. Reeves W. C., Caussy D., Brinton L. A., Brenes M. M., Montalvan P., Gomez B., de Britton R. C., Morice E., Gaitan E., Loo de Lao S., Rawls W. E. 1987; Case-control study of human papillomaviruses and cervical cancer in Latin America. International Journal of Cancer 40:450–454
    [Google Scholar]
  48. Reeves W. C., Brinton L. A., Garcia M., Brenes M. M., Herrero R., Gaitan E., Tenorio F., de Britton R. C., Rawls W. E. 1989; Human papillomavirus infection and cervical cancer in Latin America. New England Journal of Medicine 320:1437–1441
    [Google Scholar]
  49. Roizman B., Borman G. S., Rousta M. 1965; Macromolecular synthesis in cells infected with herpes simplex virus. Nature, London 206:1374–1375
    [Google Scholar]
  50. Sandri-Goldin R. M., Mendoza G. E. 1992; A herpesvirus regulatory protein appears to act post-transcriptionally by affecting mRNA processing. Genes and Development 6:848–863
    [Google Scholar]
  51. Scheffner M., Werness B. A., Huibregtse J. M., Levine A. J., Howley P. M. 1990; The E6 oncoprotein encoded by human papillomavirus types 16 and 18 promotes the degradation of p53. Cell 63:1129–1136
    [Google Scholar]
  52. Schmitt J., Schlehofer J. R., Mergener K., Gissmann L., zur Hausen H. 1989; Amplification of bovine papillomavirus DNA by iV-methyl-A′-nitro-A-nitrosoguanidine, ultraviolet irradiation, or infection with herpes simplex virus. Virology 172:73–81
    [Google Scholar]
  53. Schneider-Gädicke A., Schwarz E. 1986; Different human cervical carcinoma cell lines show similar transcription patterns of human papillomavirus type 18 early genes. EMBO Journal 5:2285–2292
    [Google Scholar]
  54. Schwarz E., Freese U. K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H. 1985; Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature, London 314:111–114
    [Google Scholar]
  55. Schwarz E., Schneider-Gädicke A., zur Hausen H. 1987; Human papillomavirus type-18 transcription in cervical carcinoma cell lines and human cell hybrids. Cancer Cells 5:47–53
    [Google Scholar]
  56. Shaw G., Kamen R. 1986; A conserved AU sequence from the 3′ untranslated region of GM-CSF mRNA mediates selective mRNA degradation. Cell 46:659–667
    [Google Scholar]
  57. Sheck N., Bachenheimer S. L. 1985; Degradation of cellular mRNA induced by a virion-associated factor during herpes simplex virus infection of Vero cells. Journal of Virology 55:601–610
    [Google Scholar]
  58. Shyu A.-B., Belasco J. G., Greenberg M. E. 1991; Two distinct destabilizing elements in the c-fos message trigger deadenylation as a first step in rapid mRNA decay. Genes and Development 5:221–231
    [Google Scholar]
  59. Smibert C. A., Johnson D. C., Smiley J. R. 1992; Identification and characterization of the virion-induced host shutoff product of herpes simplex virus gene UL41. Journal of General Virology 73:467–470
    [Google Scholar]
  60. Smotkin D., Wettstein F. O. 1986; Transcription of human papillomavirus type 16 early genes in a cervial cancer and a cancer-derived cell line and identification of the E7 protein. Proceedings of the National Academy of Sciences, U.S.A. 83:4680–4684
    [Google Scholar]
  61. Strom T., Frenkel N. 1987; Effects of herpes simplex virus on mRNA stability. Journal of Virology 61:2198–2207
    [Google Scholar]
  62. Sydiskis R. J., Roizman B. 1966; Polysomes and protein synthesis in cells infected with a DNA virus. Science 153:76–78
    [Google Scholar]
  63. Thierry F., Heard J. M., Dartmann K., Yaniv M. 1987; Characterization of a transcriptional promoter of human papillomavirus 18 and modulation of its expression by simian virus 40 and adenovirus early antigens. Journal of Virology 61:134–142
    [Google Scholar]
  64. Watson R. J., Clements J. B. 1978; Characterization of transcription-deficient temperature-sensitive mutants of herpes simplex virus type 1. Virology 91:364–379
    [Google Scholar]
  65. Watson R. J., Clements J. B. 1980; A herpes simplex virus type 1 function continuously required for early and late virus RNA synthesis. Nature, London 285:329–330
    [Google Scholar]
  66. Werness B. A., Levine A. J., Howley P. M. 1990; Association of human papillomavirus types 16 and 18 proteins with p53. Science 248:76–79
    [Google Scholar]
  67. zur Hausen H. 1982; Human genital cancer: synergism between two virus infections or synergism between a virus infection and initiating events. Lancet ii:1370–1372
    [Google Scholar]
  68. zur Hausen H. 1989; Papillomaviruses in anogenital cancer as a model to understand the role of viruses in human cancers. Cancer Research 49:4677–4681
    [Google Scholar]
  69. zur Hausen H. 1991; Human papillomaviruses in the pathogenesis of anogenital cancer. Virology 184:9–13
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-74-6-965
Loading
/content/journal/jgv/10.1099/0022-1317-74-6-965
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error