1887

Abstract

Nine open reading frames mapping in the short unique (U) region of the genome of herpesvirus of turkeys (HVT) were expressed by transcription and translation. The observed s of US10, SORF3 and US2 were as predicted from the sequence but there were discrepancies between the observed and predicted s of US1, protein kinase, gl, gD and gE. These could be accounted for in most cases by post-translational and co-translational processing. Analysis of the synthesized products at different time points provided evidence for post-translational modification of HVT protein kinase. Translation in the presence of microsomal membranes resulted in co-translational processing of HVT gD, gl and gE by glycosylation and signal peptide cleavage.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-10-2747
1994-10-01
2024-05-03
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/10/JV0750102747.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-10-2747&mimeType=html&fmt=ahah

References

  1. Bell S., Cranage M., Borysiewicz L., Minson T. 1990; Induction of immunoglobulin G Fc receptors by recombinant vaccinia viruses expressing glycoproteins E and I of herpes simplex virus type 1. Journal of Virology 64:2181–2186
    [Google Scholar]
  2. Brunovskis P., Velicer L. F. 1992; Genetic organization of the Marek’s disease virus unique short region and identification of US encoded polypeptides. In Proceedings of 19th World’s Poultry Congress 1 pp. 74–78 Wageningen: Ponsen & Looijen;
    [Google Scholar]
  3. Brunovskis P., Chen X., Velicer L. F. 1992; Analysis of Marek’s disease virus glycoproteins D, I and E. In Proceedings of 19th World’s Poultry Congress 1: pp. 118–122 Wageningen: Ponsen & Looijen;
    [Google Scholar]
  4. Buckmaster A. E., Scott S. D., Sanderson M. J., Boursnell M. E. G., Ross N. L. J., Binns M. M. 1988; Gene sequence and mapping data from Marek’s disease virus and herpesvirus of turkeys: implications for herpesvirus classification. Journal of General Virology 69:2033–2042
    [Google Scholar]
  5. Cantello J. L., Anderson A. S., Francesconi A., Morgan R. W. 1991; Isolation of a Marek’s disease virus (MDV) recombinant containing the LacZ gene of Escherichia coli stably inserted within the MDV US2 gene. Journal of Virology 65:1584–1588
    [Google Scholar]
  6. Cebrian J., Kaschka-Dierich C., Berthelot N., Sheldrick P. 1982; Inverted repeat nucleotide sequences in the genomes of Marek’s disease virus and the herpesvirus of turkey. Proceedings of the National Academy of Sciences, U.S.A 79:555–558
    [Google Scholar]
  7. Churchill A. E., Biggs P. M. 1967; Agent of Marek’s disease in tissue culture. Nature; London: 215528–530
    [Google Scholar]
  8. Cohen G. H., Dietzschold B., Ponce de Leon M., Long D., Golubi E., Varrichio A., Eisenberg R. J. 1984; Localization and synthesis of an antigenic determinant of herpes simplex virus glycoprotein D that stimulates production of neutralizing antibody. Journal of Virology 49:102–108
    [Google Scholar]
  9. Dorsky D. I., Crumpacker C. S. 1988; Expression of herpes simplex virus type 1 DNA polymerase gene by in vitro translation and effects of gene deletions on activity. Journal of Virology 62:3224–3232
    [Google Scholar]
  10. Frame M. C., Purves F. C., Mcgeoch D. J., Marsden H. S., Leader D. P. 1987; Identification of the herpes simplex virus protein kinase as the product of the viral gene US3. Journal of General Virology 68:2699–2704
    [Google Scholar]
  11. Fukuchi K., Sudo M., Lee Y.-S., Tanaka A., Nonoyama M. 1984; Structure of Marek’s disease virus DNA: detailed restriction enzyme map. Journal of Virology 51:102–109
    [Google Scholar]
  12. Fuller A. O., Spear P. G. 1987; Anti-glycoprotein D antibodies that permit adsorption but block infection by herpes simplex virus 1 prevent virion-cell fusion at the cell surface. Proceedings of the National Academy of Sciences, U.S.A 84:5454–5458
    [Google Scholar]
  13. Igarashi T., Takahashi M., Donovan J., Jessip J., Smith M., Hirai K., Tanaka A., Nonoyama M. 1987; Restriction enzyme map of herpesvirus of turkey DNA and its collinear relationship with Marek’s disease virus DNA. Virology 157:351–358
    [Google Scholar]
  14. Johnson D. C., Feentra V. 1987; Identification of a novel herpes simplex virus type 1-induced glycoprotein which complexes with gE and binds immunoglobulin. Journal of Virology 61:2208–2216
    [Google Scholar]
  15. Johnson D. C., Frame M. C., Ligas M. W., Cross A. M., Stow N. D. 1988; Herpes simplex virus immunoglobulin G Fc receptor activity depends on a complex of two viral glycoproteins, gE and gI. Journal of Virology 62:1347–1354
    [Google Scholar]
  16. Kozak M. 1987; An analysis of 5′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Research 15:8125–8148
    [Google Scholar]
  17. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature; London: 227680–685
    [Google Scholar]
  18. Lee G. T.-Y., Para M. F., Spear P. G. 1982; Location of the structural genes for glycoproteins gD and gE and for other polypeptides in the S component of herpes simplex virus type 1 DNA. Journal of Virology 43:41–49
    [Google Scholar]
  19. Mcgeoch D. J., Dolan A., Donald S., Rixon F. J. 1985; Sequence determination and genetic content of the short unique region in the genome of herpes simplex virus type 1. Journal of Molecular Biology 181:1–13
    [Google Scholar]
  20. Marsden H. S., Crombie I. K., Subak-Sharpe J. H. 1976; Control of protein synthesis in herpesvirus-infected cells: analysis of the polypeptides induced by wild type virus and sixteen temperature-sensitive mutants of HSV strain 17. Journal of General Virology 31:347–372
    [Google Scholar]
  21. Matthews J. T., Cohen G. H., Eisenberg R. J. 1983; Synthesis and processing of glycoprotein D of herpes simplex virus type 1 and 2 in an in vitro system. Journal of Virology 48:521–533
    [Google Scholar]
  22. Morgan R. W., Gelb J., Schreurs CH. S., Lüticken D., Rosenberg J. K., Sondermeijer P. J. A. 1992; Protection of chickens from Newcastle and Marek’s diseases with a recombinant herpesvirus of turkeys vaccine expressing the Newcastle disease virus fusion protein. Avian Diseases 36:858–870
    [Google Scholar]
  23. Para M. F., Parish M. L., Noble A. G., Spear P. G. 1985; Potent neutralizing activity associated with anti-glycoprotein D specificity among monoclonal antibodies selected for binding to herpes simplex virions. Journal of Virology 55:483–488
    [Google Scholar]
  24. Payne L. N. 1985; Pathology. In Marek’s Disease: Scientific Basis and Methods of Control pp. 43–75 Payne L. N. Edited by Boston: Martinus Nijhoff Publishing;
    [Google Scholar]
  25. Pereira L., Wolff M., Fenwick M., Roizman B. 1977; Regulation of herpesvirus synthesis. V. Properties of α polypeptides specified by HSV-1 and HSV-2. Virology 77:733–749
    [Google Scholar]
  26. Purves F., Spector D., Roizman B. 1991; The herpes simplex virus 1 protein kinase encoded by the US3 gene mediates posttranslational modification of the phosphoprotein encoded by the UL34 gene. Journal of Virology 65:5757–5764
    [Google Scholar]
  27. Robertson A. T., Caughman G. B., Gray W. L., Baumann R. P., Staczek J., O’Callaghan D. J. 1988; Analysis of the in vitro translation products of the equine herpesvirus type 1 immediate early mRNA. Virology 166:451–462
    [Google Scholar]
  28. Ross L. J. N., Binns M. M. 1991; Properties and evolutionary relationships of the Marek’s disease virus homologues of protein kinase, glycoprotein D and glycoprotein I of herpes simplex virus. Journal of General Virology 72:939–947
    [Google Scholar]
  29. Ross L. J. N., Binns M. M., Pastorek J. 1991; DNA sequence and organization of genes in a 5·5 kbp EcoRI fragment mapping in the short unique segment of Marek’s disease virus (strain RB1B). Journal of General Virology 72:949–954
    [Google Scholar]
  30. Sakaguchi M., Urakawa T., Hirayama Y., Miki N., Yamamoto M., Hirai K. 1992; Sequence determination and genetic content of an 8·9-kb restriction fragment in the short unique region and the internal inverted repeat of Marek’s disease virus type 1 DNA. Virus Genes 6:365–378
    [Google Scholar]
  31. Sakaguchi M., Urakawa T., Hirayama Y., Miki N., Yamamoto M., Zhu G.-S., Hirai K. 1993; Marek’s disease virus protein kinase gene identified within short unique region of the viral genome is not essential for viral replication in cell culture and vaccine-induced immunity in chickens. Virology 195:140–148
    [Google Scholar]
  32. Sears A. E., Halliburton I. W., Meignier B., Silver S., Roizman B. 1985; Herpes simplex virus 1 mutant deleted in the α22 gene: growth and gene expression in permissive and restrictive cells and establishment of latency in mice. Journal of Virology 55:338–346
    [Google Scholar]
  33. Witter R. L., Nazerian K., Purchase H. G., Burgoyne G. H. 1970; Isolation from turkeys of cell-associated herpesvirus antigenically related to Marek’s disease virus. American Journal of Veterinary Research 31:525–538
    [Google Scholar]
  34. Zelník V., Darteil R., Audonnet J. C., Smith G. D., Riviere M., Pastorek J., Ross L. J. N. 1993; The complete sequence and gene organization of the short unique region of herpesvirus of turkeys. Journal of General Virology 74:2151–2162
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-10-2747
Loading
/content/journal/jgv/10.1099/0022-1317-75-10-2747
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error