1887

Abstract

Monocyte-derived macrophages (MDM) were demonstrated to be susceptible to productive infection by the monocytotropic human immunodeficiency virus type 1 (HIV-1) strain HIV-1/Ba-L and by three primary HIV-1 isolates, HIV-1/DAS, HIV-1/PAR and HIV-1/THI. Production of tumour necrosis factor- (TNF-), interleukin-6 (IL-6) and IL-1 was monitored between days 3 and 26 after MDM infection. TNF- and IL-6 were detected in cell culture supernatants from days 16 to 21 following HIV-1/DAS, HIV-1/PAR and HIV-1/Ba-L infection, at the time of high viral replication. IL-1 was not found at the same time points. TNF- mRNA expression occurred around the peak of both TNF- levels and supernatant RT activities. In HIV-1/THI-infected macrophage cultures no endogenously produced TNF- was observed, despite high levels of HIV-1 in MDM. This result demonstrates that a primary isolate may replicate independently of TNF- in MDM. To investigate the relationship between TNF- and viral replication we used a TNF- synthesis inhibitor, RP 55778. Treatment throughout the course of cell culture resulted in a significant decrease in both TNF- levels and viral production in HIV-1/DAS-, HIV-1/PAR- and HIV-1/Ba-L-infected MDM cultures. This phenomenon is reversed by adding recombinant human TNF- to the RP 55778-treated cell cultures from day 14 post-infection. No effect of RP 55778 was observed in MDM cultures infected with the primary isolate HIV-1/THI, whose replication is independent of TNF- production and therefore remained unchanged after RP 55778 treatment. We conclude that the clinical value of such a drug is directly dependent on the ability of the HIV-1 strains involved to induce TNF- production at the time of viral replication.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-6-1379
1994-06-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/6/JV0750061379.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-6-1379&mimeType=html&fmt=ahah

References

  1. Alonso S., Minty A., Bourlet Y., Buckingham M. 1986; Comparison of three actin-coding sequences in the mouse: evolutionary relationships between the actin gene of warm-blooded vertebrates. Journal of Molecular Evolution 23:11–22
    [Google Scholar]
  2. Andreesen R., Bross K. J., Osterholz J., Emmrich F. 1986; Human macrophage maturation and heterogeneity: analysis with a newly generated set of monoclonal antibodies to differentiation antigens. Blood 5:1257–1264
    [Google Scholar]
  3. Armstrong J. A., Horne R. 1984; Follicular dendritic cells and virus-like particles in AIDS-related lymphadenopathy. Lancet ii:370
    [Google Scholar]
  4. Barré-Sinoussi F. C., Chermann J.-C., Rey F., Nugeyre M. T., Charmaret S., Gruest J., Dauguet C., Axler-Blin C., Vezinet-Brun F., Rouxioux C., Rozenbaum W., Montagnier L. 1983; Isolation of a T-lymphotropic retrovirus from a patient at risk of acquired immune deficiency syndrome (AIDS). Science 220:868–871
    [Google Scholar]
  5. Beutler B., Cerami A. 1989; The biology of cachectin/TNF a primary mediator of the host response. Annual Review of Immunology 7:625–655
    [Google Scholar]
  6. Boussin F., Dormont D., Merrouche Y., Fleury H., Dubeaux D., Becquet D., Gouasguen J., Brunet P. 1987; Possible involvement of HIV in neuropsychiatric episode in a patient seronegative for two (or more) years. Lancet ii:571
    [Google Scholar]
  7. Buonaguro L., Barillari G., Chang H. K., Bohan C. A., Kao V., Morgan R., Gallo R. C., Ensoli B. 1992; Effects of the human immunodeficiency virus type 1 Tat protein on the expression of inflammatory cytokines. Journal of Virology 66:7159–7167
    [Google Scholar]
  8. Cerami A., Beutler B. 1988; The role of cachectin/TNF in endotoxic shock and cachexia. Immunology Today 9:28–31
    [Google Scholar]
  9. Chermann J.-C. 1990; HIV-α ssociated diseases: acute and regressive encephalopathy in a seropositive man. Research in Virology 141:137–141
    [Google Scholar]
  10. Chomczynski P., Sacchi N. 1987; Single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction. Analytical Biochemistry 162:156–159
    [Google Scholar]
  11. Cox R. A., Anders G. T., Cappelli P. J., Johnson J. E., Blanton H. M., Seaworth B. J., Treasure R. L. 1990; Production of tumor necrosis factor-α lpha and interleukin-1 by alveolar macrophages from HIV-1-infected persons. AIDS Research and Human Retroviruses 6:431–441
    [Google Scholar]
  12. Dinarello C. A. 1989; Interleukin-1 (IL-1) and its biologically related cytokines. Advances in Immunology 44:153–205
    [Google Scholar]
  13. Duh E. J., Maury W. J., Folks T. M., Fauci A. S., Rabson A. B. 1989; Tumor necrosis factor alpha activates human immunodeficiency virus type 1 through induction of nuclear factor binding to the NF- k B sites in the long terminal repeat. Proceedings of the National Academy of Sciences U.S.A.: 865974–5978
    [Google Scholar]
  14. Fanger M. W., Shen L., Graziano R. F., Guyre P. M. 1989; Cytotoxicity mediated by human Fc receptors for IgG. Immunology Today 10:92–99
    [Google Scholar]
  15. Fauci A. S. 1988; The human immunodeficiency virus: infectivity and mechanisms of pathogenesis. Science 239:617–622
    [Google Scholar]
  16. Fazely F., Dezube B. J., Allen-Ryan J., Pardee A. B., Ruprecht R. M. 1991; Pentoxifylline (Trental) decreases the replication of the human immunodeficiency virus type 1 in human peripheral blood mononuclear cells and in cultured T cells. Blood 77:1653–1656
    [Google Scholar]
  17. Fish H., Gifford G. E. 1983; A photometric and plaque assay for macrophage mediated tumor cell cytotoxicity. Journal of Immunological Methods 57:311–325
    [Google Scholar]
  18. Floch A., Bousseau A., Hetier E., Floc’h F., Bost P.-E., Cavero I. 1989; RP 55778, a PAF receptor antagonist, prevents and reverses LPS-induced hemoconcentration and TNF release. Journal of Lipid Mediators 1:349–360
    [Google Scholar]
  19. Folks T. M., Justement J., Kinter A., Schnittman S., Orenstein J., Poli G., Fauci A. S. 1988; Characterization of a promonocyte clone chronically infected with HIV and inducible by 13-phorbol-12 myristate acetate. Journal of Immunology 140:1117–1122
    [Google Scholar]
  20. Folks T. M., Benn S., Rabson A., Theodore T., Hoggan M. D., Martin M., Lighfoote M., Sell K. 1985; Characterization of a continuous T-cell line susceptible to the cytopathic effects of the acquired immunodeficiency syndrome (AIDS)-α ssociated retrovirus. Proceedings of the National Academy of Sciences U.S.A: 824539–4543
    [Google Scholar]
  21. Folks T. M., Clouse K. A., Justement J., Rabson A., Duh E., Kehrl J. H., Fauci A. S. 1989; Tumor necrosis factor alpha induces expression of human immunodeficiency virus in a chronically infected T-cell clone. Proceedings of the National Academy of Sciences U.S.A: 862365–2368
    [Google Scholar]
  22. Gallo P., Frei K., Rordorf C., Lazdins J., Tavolato B., Fontana A. 1989; Human immunodeficiency virus type 1 (HIV-1) infection of the central nervous system: an evaluation of cytokines in cerebrospinal fluid. Journal of Neuroimmunology 23:109–116
    [Google Scholar]
  23. Gartner S., Markovits P., Markovitz D. M., Kaplan M. H., Gallo R. C., Popovic M. 1986a; The role of mononuclear phagocytes in HTLV-III/LAV infection. Science 233:215–219
    [Google Scholar]
  24. Gartner S., Markovits P., Markovitz D. M., Betts R. F., Popovic M. 1986b; Virus isolation from and identification of HTLV-III/LAV-producing cells in brain tissue from a patient with AIDS. Journal of the American Medical Association 256:2365–2371
    [Google Scholar]
  25. Gendelman H. E., Orenstein J. M., Martin M. A., Ferrua C., Mitra R., Phipps T., Wahl L. A., Lane H. C., Fauci A. S., Burke D. S., Skillman D., Meltzer M. S. 1988; Efficient isolation and propagation of human immunodeficiency virus recombinant colony-stimulating factor 1-treated monocytes. Journal of Experimental Medicine 176:1428–1441
    [Google Scholar]
  26. Griffin G. E., Leung K., Folks T. M., Kunkel S., Nabel G. J. 1989; Activation of HIV gene expression during monocyte differentiation by induction of NF- k B. Nature; London: 33970–73
    [Google Scholar]
  27. Harada S., Koyanagi Y., Yamamoto N. 1985; Infection of HTLV-IIIB/LAV in HTLV-I-carrying cells MT2 and MT4 and application in a plaque assay. Science 229:563–566
    [Google Scholar]
  28. Ho D. D., Rota T. R., Hirsch M. S. 1986; Infection of monocyte/macrophages by human T lymphotropic virus type III. Journal of Clinical Investigation 77:1712–1715
    [Google Scholar]
  29. Ho D. D., Pomerantz R. J., Kaplan J. C. 1987; Pathogenesis of infection with human immunodeficiency virus. New England Journal of Medicine 317:278–286
    [Google Scholar]
  30. Kazazi F., Mathiis J.-M., Foley P., Cunningham A. L. 1989; Variations in CD4 expression by human monocytes and macrophages and their relationship to infection with the human immuno-deficiency virus. Journal of General Virology 70:2661–2672
    [Google Scholar]
  31. Kishimoto T. 1989; The biology of interleukin-6. Blood 74:1–10
    [Google Scholar]
  32. Koenig S., Gendelman H. E., Orenstein J. M., Dalcanto M. C., Pezeshkpour G. H., Yungbluth M., Janotta F., Aksamit A., Martin M. A., Fauci A. S. 1986; Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 233:1089–1093
    [Google Scholar]
  33. Lähdevirta J., Maury C. P. J., Teppo A. M., Repo H. 1988; Elevated levels of circulating cachectin/tumor necrosis factor in patients with acquired immunodeficiency syndrome. American Journal of Medicine 85:289–291
    [Google Scholar]
  34. Le J., Vilcek J. 1987; Tumor necrosis factor and interleukin 1: cytokines with multiple overlapping biological activities. Laboratory Investigation 56:234–248
    [Google Scholar]
  35. Le Naour R., Raoul H., Mabondzo A., Ripoll L., Batholeyns J., Romet-Lemonne J.-L., Dormont D. 1992; Functional consequences of monocyte/macrophage infection by HIV-1. Research in Immunology 143:49–56
    [Google Scholar]
  36. Leonardo M. J., Baltimore D. 1989; NF- k B: a pleiotropic mediator of inducible and tissue-specific gene control. Cell 58:227–231
    [Google Scholar]
  37. Mabondzo A., Aussage P., Bartholeyns J., Le Naour R., Raoul H., Romet-Lemonne J.-L., Dormont D. 1992; Bispecific antibody targeting of human immunodeficiency virus type 1 (HIV-1) glycoprotein 41 to human macrophages through the Fc IgG receptor I mediates neutralizing effects in HIV-1 infection. Journal of Infectious Diseases 166:93–99
    [Google Scholar]
  38. McElrath M. J., Pruett J. E. 1989; Mononuclear phagocytes of blood and bone marrow: comparative roles as viral reservoirs in human immunodeficiency virus type 1 infections. Proceedings of the National Academy of Sciences U.S.A.: 86675–679
    [Google Scholar]
  39. Nabel G., Baltimore D. 1987; An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature; London: 426711–716
    [Google Scholar]
  40. Nakajima K., Martinez-Maza O., Hirano T., Breen E. C., Nishanian P. G., Salazar-Gonzales J. F., Fahey J. L., Kishimoto T. 1989; Induction of IL-6 (B cell stimulatory factor-2/IFN-β2) production by HIV. Journal of Immunology 142:531–536
    [Google Scholar]
  41. Nicholson J. K. A., Cross G. D., Callaway C. S., Mcdougal J. S. 1986; In vitro infection of human monocytes with human T lymphotropic virus type III/lymphadenopathy-α ssociated virus (HTLV-III/LAV). Journal of Immunology 137:323–329
    [Google Scholar]
  42. Osborn L., Kunkel S., Nabel G. J. 1989; Tumor necrosis factor alpha and interleukin 1 stimulate the human immunodeficiency virus enhancer by activation of the nuclear factor KB. Proceedings of the National Academy of Sciences U.S.A.: 862336–2340
    [Google Scholar]
  43. Perno C. F., Basler M. W., Broder S., Yarchoan R. 1990; Infection of monocytes by human immunodeficiency virus type 1 blocked by inhibitors of CD4-gpl20 binding even in the presence of enhancing antibodies. Journal of Experimental Medicine 171:1043–1056
    [Google Scholar]
  44. Plata F., Autran B., Martins L. P., Wain-Hobson S., Raphael M., Mayaud C., Denis M., Guillon J.-M., Debre P. 1987; AIDS virus specific cytotoxic T lymphocytes in lung disorders. Nature; London: 328348–351
    [Google Scholar]
  45. Poli G., Kinter A., Justement J. S., Kehrl J. H., Bressler P., Stanley S., Fauci A. S. 1990a; Tumor necrosis factor a functions in an autocrine manner in the induction of human immunodeficiency virus expression. Proceedings of the National Academy of Sciences U.S.A.: 87782–785
    [Google Scholar]
  46. Poli G., Bressler P., Kinter A., Duh E., Timmer W. C., Rabson A., Justement J. S., Stanley S., Fauci A. S. 1990b; Interleukin 6 induces human immunodeficiency virus expression in infected cells alone and in synergy with tumor necrosis factor a by transcriptional and post-transcriptional mechanisms. Journal of Experimental Medicine 172:151–158
    [Google Scholar]
  47. Popovic M., Gartner S. 1987; Isolation of HIV-1 from monocytes but not T lymphocytes. Lancet ii:916
    [Google Scholar]
  48. Potts B. J., Maury W., Martin M. A. 1990; Replication of HIV-1 in primary monocyte cultures. Virology 17:465–176
    [Google Scholar]
  49. Rappersberger K., Gartner S., Schenk P., Stingl G., Groh V., Tschachler E., Mann D. L., Wolff K., Konrad K., Popovic M. 1988; Langerhans cells are an actual site of HIV-1 replication. Intervirology 29:185–194
    [Google Scholar]
  50. Rey M., Spire B., Dormont D., Barré-Sinoussi F., Montagnier L., Chermann J.-C. 1984; Characterization of the RNA dependent DNA polymerase of a new human T-lymphotropic retrovirus (lymphadenopathy associated virus). Biochemical and Biophysical Research Communications 121:126–133
    [Google Scholar]
  51. Strieter R. M., Remick D. G., Ward P. A., Spengler R. N., Lynch J. P., Larrick J., Kunkel S. L. 1988; Cellular and molecular regulation of tumor necrosis factor-α lpha production by pentoxifylline. Biochemical and Biophysical Research Communi-cations 155:1230–1238
    [Google Scholar]
  52. Weissman D., Poli G., Bousseau A., Fauci A. S. 1993; A platelet-α ctivating factor antagonist, RP 55778, inhibits cytokine-dependent induction of human immunodeficiency virus expression in chronically infected promonocytic cells. Proceedings of the National Academy of Sciences U.S.A: 902537–2541
    [Google Scholar]
  53. Wright S. C., Jewett A., Mitsuyasu R., Bonavida B. 1988; Spontaneous cytototoxicity and tumor necrosis factor production by peripheral blood monocytes from AIDS patients. Journal of Immunology 141:99–104
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-6-1379
Loading
/content/journal/jgv/10.1099/0022-1317-75-6-1379
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error