1887

Abstract

Human T cell leukaemia virus type 1 (HTLV-1) protease (PR14) was expressed in bacteria and purified by gel filtration. A continuous spectrophotometric assay was used to measure the kinetic parameters of substrate hydrolysis by PR14. Several peptide substrates containing HTLV-1 sequences known to be cleaved by PR14 were used. Cleavage analysis showed that the affinity with which PR14 binds these substrates is higher than that previously reported for HTLV-1 Gag peptides. Also, the affinities of peptides containing the sites involved in autocleavage of protease from its precursor are higher than for the peptides containing sites required for structural protein maturation. This suggests that the autocatalysis of protease from its own precursor has priority over other cleavage reactions and supports similar observations of an ordered hierarchy of processing events by retroviral proteases. As the N- and C-terminal regions of retroviral aspartic proteases are known to contribute to stability of the dimer by forming antiparallel β-strands, short peptides corresponding to these terminal sequences of HTLV-1 protease were tested for their ability to inhibit cleavage of substrates by PR14. Inhibition was seen with a C-terminal peptide corresponding exactly to the C-terminal 11 amino acids of the processed PR14, whereas a peptide containing a sequence situated further from the C terminus was less effective. An inhibitor of the protease of human immunodeficiency virus type 1, Ro 31-8959, was found to be a poor inhibitor of PR14.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-75-9-2233
1994-09-01
2024-04-28
Loading full text...

Full text loading...

/deliver/fulltext/jgv/75/9/JV0750092233.html?itemId=/content/journal/jgv/10.1099/0022-1317-75-9-2233&mimeType=html&fmt=ahah

References

  1. Baum E. A., Bebernitz G. A., Gluzman Y. 1990; Isolation of mutants of human immunodeficiency virus protease based on the toxicity of the enzyme in Escherichia coli. Proceedings of the National Academy of Sciences U.S.A: 875573–5577
    [Google Scholar]
  2. Beynon R. J., Bond J. S. 1989; Determination of protease mechanism. pp 57–82 Inhibition of proteolytic enzymes pp 83–104 In Proteolytic Enzymes: A Practical Approach Rickwood D., Hames B. D. Edited by Oxford: IRL Press;
    [Google Scholar]
  3. Blaha I., Tozser J., Kim Y., Copeland T. D., Oroszlan S. 1992; Solid phase synthesis of the proteinase of bovine leukemia virus: comparison of its specificity to that of HIV-2 proteinase. FEBS Letters 309:389–393
    [Google Scholar]
  4. Cameron C. E., Grinde B., Jacques P., Jentoft J., Leis J. 1993; Comparison of the substrate-binding pockets of the Rous sarcoma virus and human immunodeficiency virus type 1 proteases. Journal of Biological Chemistry 268:11711–11720
    [Google Scholar]
  5. Darke P. L., Jordan S. P., Hall D. L., Zugay J. A., Shafer J. A., Kuo L. C. 1994; Dissociation and association of the HIV-1 protease dimer subunits: equilibria and rates. Biochemistry 33:98–105
    [Google Scholar]
  6. Griffiths J. T., Phylip L. H., Konvalinka J., Strop P., Gust-China A., Wlodawer A., Davenport R. J., Briggs R., Dunn B. M., Kay J. 1992; Different requirements for productive interaction between the active site of HIV-1 proteinase and substrates containing -hydrophobic*hydrophobic- or -aromatic*Pro- cleavage sites. Biochemistry 31:5193–5200
    [Google Scholar]
  7. Hayakawa T., Misumi Y., Kobayashi M., Ohi Y., Fujisawa Y., Kakinuma A., Hatanaka M. 1991; Expression of human T-cell leukemia virus type 1 protease in Escherichia coli. Biochemical and Biophysical Research Communications 181:1281–1287
    [Google Scholar]
  8. Hayakawa T., Misumi Y., Kobayashi M., Yamamoto Y., Fujisawa Y. 1992; Requirement of N- and C-terminal regions for enzymatic activity of human T-cell leukemia virus type 1 protease. European Journal of Biochemistry 206:919–925
    [Google Scholar]
  9. Henderson L. E., Benveniste R. E., Sowder R., Copeland T. D., Schultz A. M., Oroszlan S. 1988; Molecular characterization of gag protein from simian immunodeficiency virus (SIVmne). Journal of Virology 62:2587–2595
    [Google Scholar]
  10. Jacobsen H., Craig C. J., Duncan I. B., Krohn A., Mous J., Yasargil K. 1993; In vitro selection and characterisation of HIV- 1 variants with reduced sensitivity to a proteinase inhibitor. AIDS Congress, Berlin Abstract WS-A19-1
    [Google Scholar]
  11. Kobayashi M., Ohi Y., Asano T., Hayakawa T., Kato K., Kakinuma A., Hatanaka M. 1991; Purification and characterization of human T-cell leukemia virus type 1 protease produced in Escherichia coli. FEBS Letters 293:106–110
    [Google Scholar]
  12. Luban J., Lee C., Goff S. P. 1993; Effect of linker insertion mutations in the human immunodeficiency virus type 1 gag gene on activation of viral protease expressed in bacteria. Journal of Virology 67:3630–3634
    [Google Scholar]
  13. Menard A., Mamoun R. Z., Geoffre S., Castroviejo M., Raymond S., Precigoux G., Hospital M., Guilleman B. 1993; Bovine leukemia virus: purification and characterization of the aspartic protease. Virology 193:680–689
    [Google Scholar]
  14. Menendez-Arias L., Gotte D., Oroszlan S. 1993; Moloney murine leukemia virus protease: bacterial expression and characterization of the purified enzyme. Virology 196:557–563
    [Google Scholar]
  15. Miyoshi I., Kubonishi I., Yoshimoto S., Akagi T., Ohtsuki Y., Shiraishi Y., Nagata K., Hinuma Y. 1981; Type C virus particle in a T-cell line derived by co-cultivating normal human cord leukocytes and human leukaemic cells. Nature; London: 294770–771
    [Google Scholar]
  16. Nam S. H., Kidokoro M., Shida H., Hatanaka M. 1988; Processing of gag precursor polyprotein of human T-cell leukemia virus type 1 by virus-encoded protease. Journal of Virology 62:3718–3728
    [Google Scholar]
  17. Pettit S. C., Simsic J., Loeb D. D., Everitt L., Hutchinson C. A.III Swanstrom R. 1991; Analysis of retroviral protease cleavage sites reveals two types of cleavage sites and the structural requirements of the P1 amino acid. Journal of Biological Chemistry 266:14539–14547
    [Google Scholar]
  18. Rangawala S. H., Finn R. F., Smith C. E., Berberich S. A., Salsgiver W. J., Stallings W. C., Glover G. I., Olins P. O. 1992; High-level production of active HIV-1 protease in Escherichia coli. Gene 122:263–269
    [Google Scholar]
  19. Richards A. D., Phylip L. H., Farmerie W. G., Scarborough P. E., Alvarez A., Dunn B. M., Hirel P. -H., Konvalinka J., Strop P., Pavlickova L., Kostka V., Kay J. 1990; Sensitive, soluble chromogenic substrates for HIV-1 proteinase. Journal of Biological Chemistry 265:7733–7736
    [Google Scholar]
  20. Roberts N. A., Martin J. A., Kinchington D., Broadhurst A. V., Craig J. C., Duncan I. B., Galpin S. A., Handa B. K., Kay J., Krohn A., Lambert R. W., Merrett J. H., Mills J. S., Parkes K. E. B., Redshaw S., Ritchie A. J., Taylor D. L., Thomas G. J., Machin P. J. 1990; Rational design of peptide- based HIV proteinase inhibitors. Science 248:358–361
    [Google Scholar]
  21. Saiga A., Tanaka T., Orita S., Sato A., Sato S., Hachisu T., Abe K., Kimura Y., Kondo Y., Fujiwara T., Igarashi H. 1993; Human T-cell leukemia virus type 1 protease expressed in Escherichia coli possesses aspartic proteinase activity. Archives of Virology 128:195–210
    [Google Scholar]
  22. Schramm H. J., Breipohl G., Hansen J., Henke S., Jaeger E., Meichsner C., Riess G., Ruppert D., Rucknagel K. -P., Scafer W., Schramm W. 1992; Inhibition of HIV-1 protease by short peptides derived from the terminal segments of the protease. Biochemical and Biophysical Research Communications 184:980–985
    [Google Scholar]
  23. Schramm H. J., Billich A., Jaeger E., Rucknagel K. -P., Arnold G., Schramm W. 1993; The inhibition of HIV-1 protease by interface peptides. Biochemical and Biophysical Research Communications 194:595–600
    [Google Scholar]
  24. Seiki M., Hattori S., Hirayama Y., Yoshida M. 1983; Human adult T-cell leukemia virus: complete nucleotide sequence of the provirus genome integrated in leukemia cell DNA. Proceedings of the National Academy of Sciences U.S.A: 803618–3622
    [Google Scholar]
  25. Studier F. W., Rosenberg A. H., Dunn J. J., Dubendorff J. W. 1990; Use of T7 RNA polymerase to direct expression of cloned genes. Methods in Enzymology 185:60–89
    [Google Scholar]
  26. Tozser J., Friedman D., Weber I. T., Blaha I., Oroszlan S. 1993; Studies on the substrate specificity of the proteinase of equine infectious anemia virus using oligopeptide substrates. Biochemistry 32:3347–3353
    [Google Scholar]
  27. Wlodawer A., Erickson J. W. 1993; Structure-based inhibitors of HIV-1 protease. Annual Review of Biochemistry 62:543–585
    [Google Scholar]
  28. Zhang Z. -Y., Poorman R. A., Maggiora L. L., Heinrikson R. L., Kezdy F. J. 1991; Dissociative inhibition of dimeric enzymes. Journal of Biological Chemistry 266:15591–15594
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-75-9-2233
Loading
/content/journal/jgv/10.1099/0022-1317-75-9-2233
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error