1887
Preview this article:

There is no abstract available.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-7-1541
1995-07-01
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/7/JV0760071541.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-7-1541&mimeType=html&fmt=ahah

References

  1. Balch W. E., Elliot M. M., Keller D. S. 1986; ATP-coupled transport of vesicular stomatitis virus G protein between the endoplasmic reticulum and the Golgi. Journal of Biological Chemistry 261:14681–14689
    [Google Scholar]
  2. Barge A., Gaudin Y., Coulon P., Ruigrok R. W. H. 1993; Vesicular stomatitis virus M protein may be inside the ribo-nucleocapsid coil. Journal of Virology 67:7246–7253
    [Google Scholar]
  3. Bron R., Kendal A. P., Klenk H.D., Wilschut J. 1993a; Role of the M2 protein in influenza virus membrane fusion: effects of amantadine and monensin on fusion kinetics. Virology 95:808–811
    [Google Scholar]
  4. Bron R., Wahlberg J. M., Garoff H., Wilschut J. 1993b; Membrane fusion of Semliki Forest virus in a model system: correlation between fusion kinetics and structural changes in the envelope glycoprotein. EMBO Journal 12:693–701
    [Google Scholar]
  5. Brunner J. 1989a; Photochemical labeling of the apolar phase of membranes. Methods in Enzymology 172:628–687
    [Google Scholar]
  6. Brunner J. 1989b; Testing topological models for the membrane penetration of the fusion peptide of influenza virus hemagglutinin. FEBS Letters 257:369–372
    [Google Scholar]
  7. Brunner J. 1993; New photolabeling and crosslinking methods. Annual Review of Biochemistry 62:483–514
    [Google Scholar]
  8. Brunner J., Spiess M., Aggeler R., Huber P., Semenza G. 1983; Hydrophobic labeling of a single leaflet of the human erythrocyte membrane. Biochemistry 22:3812–3820
    [Google Scholar]
  9. Brunner J., Zugliani C., Mischler R. 1991; Fusion activity of influenza PR8/34 correlates with a temperature-induced conformational change within the hemagglutinin ectodomain detected by photochemical labeling. Biochemistry 30:2432–2438
    [Google Scholar]
  10. Bukrinskaya A. G., Vorkunova N. K., Kornilayeva G. V., Narmanbetova R. A., Vorkunova G. K. 1982; Influenza virus uncoating in infected cells and effect of rimantadine. Journal of General Virology 60:49–59
    [Google Scholar]
  11. Bullough P. A., Hughson F. M., Treharne A. C., Ruigrok R. W. H., Skehel J. J., Wiley D. C. 1994a; Crystals of a fragment of influenza haemagglutinin in the low pH induced conformation. Journal of Molecular Biology 236:1262–1265
    [Google Scholar]
  12. Bullough P. A., Hughson F. M., Skehel J. J., Wiley D. C. 1994b; Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43
    [Google Scholar]
  13. Bundo-Morita K., Gibson S., Lenard J. 1988; Radiation inactivation analysis of fusion and hemolysis by vesicular stomatitis virus. Virology 163:622–624
    [Google Scholar]
  14. Carr C. M., Kim P. S. 1993; A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73:823–832
    [Google Scholar]
  15. Clague M. J., Schoch C., Zech L., Blumenthal R. 1990; Gating kinetics of pH-activated membrane fusion of vesicular stomatitis virus with cells: stopped-flow measurements by dequenching of octadecylrhodamine fluorescence. Biochemistry 29:1303–1308
    [Google Scholar]
  16. Clague M. J., Knutson J. R., Blumenthal R., Herrmann A. 1991a; Interaction of influenza hemagglutinin amino-terminal peptide with phospholipid vesicles: a fluorescence study. Biochemistry 30:5491–5497
    [Google Scholar]
  17. Clague M. J., Schoch C., Blumenthal R. 1991b; Delay time for influenza virus hemagglutinin-induced membrane fusion depends on hemagglutinin surface density. Journal of Virology 65:2402–2407
    [Google Scholar]
  18. Crimmins D. L., Mehard W. B., Schlesinger S. 1983; Physical properties of a soluble form of the glycoprotein of vesicular stomatitis virus at neutral and acidic PH. Biochemistry 22:5790–5796
    [Google Scholar]
  19. Daniels R. S., Douglas A. R., Skehel J. J., Wiley D. C. 1983; Analyses of the antigenicity of influenza haemagglutinin at the pH optimum for virus-mediated membrane fusion. Journal of General Virology 64:1657–1662
    [Google Scholar]
  20. Daniels R. S., Downie J. C., Hay A. J., Knossow M., Skehel J. J., Wang M. L., Wiley D. C. 1985; Fusion mutants of the influenza virus hemagglutinin glycoprotein. Cell 40:431–439
    [Google Scholar]
  21. Delfino J. M., Schreiber S. L., Richards F. M. 1993; Design, synthesis, and properties of a photoactivatable membrane-spanning phospholipid probe. Journal of the American Chemical Society 115:3458–3474
    [Google Scholar]
  22. Doms R. W., Helenius A. H., White J. M. 1985; Membrane fusion activity of the influenza virus hemagglutinin: the low pH-induced conformational change. Journal of Biological Chemistry 260:2973–2981
    [Google Scholar]
  23. Doms R. W., Keller D. S., Helenius A., Balch W. 1987; Role for adenosine triphosphate in regulating the assembly and transport of vesicular stomatitis virus G protein trimers. Journal of Cell Biology 105:1957–1969
    [Google Scholar]
  24. Durrer P., Gaudin Y., Ruigrok R. W. H., Graf R., Brunner J. 1995; Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis virus. Journal of Biological Chemistry (in press)
    [Google Scholar]
  25. Ellens H., Bentz J., Mason D., Zhang F., White J. W. 1990; Fusion of influenza hemagglutinin-expressing fibroblasts with glycophorin-bearing liposomes: role of hemagglutinin surface density. Biochemistry 29:9697–9707
    [Google Scholar]
  26. Florkiewicz R. Z., Rose J. K. 1984; A cell line expressing vesicular stomatitis virus glycoprotein fuses at low pH. Science 225:721–723
    [Google Scholar]
  27. Formanowski F., Wharton S. A., Calder L. J., Hofbauer C., Meier-Ewert H. 1990; Fusion characteristics of influenza C viruses. Journal of General Virology 71:1181–1188
    [Google Scholar]
  28. Fujiyoshi N. P., Kume N. P., Sakata K., Sato S. B. 1994; Fine structure of influenza A virus observed by electron cryo-microscopy. EMBO Journal 13:318–326
    [Google Scholar]
  29. Garoff H., Frischauf A.M., Simons K., Lehrach H., Delius H. 1980; Nucleotide sequence of cDNA coding for Semliki Forest virus membrane glycoproteins. Nature 288:236–241
    [Google Scholar]
  30. Gaudin Y., Tuffereau C., Segretain D., Knossow M., Flamand A. 1991; Reversible conformational changes and fusion activity of rabies virus glycoprotein. Journal of Virology 65:4853–1859
    [Google Scholar]
  31. Gaudin Y., Ruigrok R. W. H., Tuffereau C., Knossow M., Flamand A. 1992; Rabies virus glycoprotein is a trimer. Virology 187:627–632
    [Google Scholar]
  32. Gaudin Y., Ruigrok R. W. H., Knossow M., Flamand A. 1993; Low-pH conformational changes of rabies virus glycoprotein and their role in membrane fusion. Journal of Virology 67:1365–1372
    [Google Scholar]
  33. Gething M. J., Doms R. W., York D., White J. 1986; Studies on the mechanism of membrane fusion: site specific mutagenesis of the haemagglutinin of influenza virus. Journal of Cell Biology 102:11–23
    [Google Scholar]
  34. Godley L., Pfeifer J., Steinhauer D., Ely B., Shaw G., Kaufmann R., Suchanek E., Pabo C., Skehel J. J., Wiley D. C., Wharton S. 1992; Introduction of intersubunit disulfide bonds in the membrane-distal region of the influenza hemagglutinin abolishes membrane fusion activity. Cell 68:635–645
    [Google Scholar]
  35. Guirakhoo F., Heinz F. X., Kunz C. 1989; Epitope model of tick-borne encephalitis virus glycoprotein E: analysis of structural properties, role of carbohydrate side chain, and conformational changes occuring at acidic pH. Virology 169:90–99
    [Google Scholar]
  36. Guirakhoo F., Heinz F. X., Mandle C. W., Holzmann H., Kunz C. 1991; Fusion activity of flaviviruses: comparison of mature and immature (prM containing), tick-borne encephalitis virions. Journal of General Virology 72:1323–1329
    [Google Scholar]
  37. Harter C., Bächi T., Semenza G., Brunner J. 1988; Hydrophobic photolabeling identifies BHA2 as the subunit mediating the interaction of bromelain-solubilized influenza virus hemagglutinin with liposomes at low pH. Biochemistry 27:1856–1864
    [Google Scholar]
  38. Harter C., James P., Bächi T., Semenza G., Brunner J. 1989; Hydrophobic binding of the ectodomain of influenza hemagglutinin to membranes occurs through the ‘fusion peptide’. Journal of Biological Chemistry 264:6459–6464
    [Google Scholar]
  39. Hay A. J. 1989; The mechanism of action of amantadine and rimantadine against influenza viruses. In Concepts in Viral Patho-genisis III pp 361–367 Edited by Notkins A. L., Oldstone M. B. A. New York: Springer Verlag;
    [Google Scholar]
  40. Heinz F. X., Stiasny K., Piüschner-Auer G., Holzmann H., Allison S. L., Mandl C. W., Kunz C. 1994; Structural changes and functional control of the tick-borne encephalitis virus glycoprotein E by the heterodimeric association with protein prM. Virology 198:109–117
    [Google Scholar]
  41. Helm C. A., Israelachvili J. N., McGuiggan P. M. 1989; Molecular mechanisms and forces involved in the adhesion and fusion of amphiphilic bilayers. Science 246:919–922
    [Google Scholar]
  42. Herrmann A., Clague M. J., Puri A., Morris S. J., Blumenthal R., Grimaldi S. 1990; Effect of erythrocyte transbilayer phospholipid distribution on fusion with vesicular stomatitis virus. Biochemistry 29:4054–4058
    [Google Scholar]
  43. Hoekstra D., de Boer T., Klappe K., Wilschut J. 1984; Fluorescence method for measuring the kinetics of fusion between biological membranes. Biochemistry 23:5675–5681
    [Google Scholar]
  44. Hughson F.M. 1995; Structural characterization of viral fusion proteins. Current Biology 5:265–274
    [Google Scholar]
  45. Justman J., Klimjack M. R., Kielian M. 1993; Role of spike protein conformational changes in fusion of Semliki Forest virus. Journal of Virology 67:7597–7607
    [Google Scholar]
  46. Kaplan D., Zimmergerg J., Puri A., Sarkar D. P., Blumenthal R. 1991; Single cell fusion events induced by influenza hemagglutinin: studies with rapid-flow, quantitative fluorescence microscopy. Experimental Cell Research 195:137–144
    [Google Scholar]
  47. Kemble G. W., Bodian D. L., Rose J., Wilson I. A., White J. M. 1992; Intermonomer disulfide bonds impair the fusion activity of influenza virus hemagglutinin. Journal of Virology 66:4940–4950
    [Google Scholar]
  48. Kemble G. W., Danieli T., White J. M. 1994; Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 76:383–391
    [Google Scholar]
  49. Kenney J. M., Sjöberg M., Garoff H., Fuller S. D. 1994; Visualization of fusion activation in the Semliki Forest virus spike. Structure 2:823–832
    [Google Scholar]
  50. Kielian M., Helenius A. 1984; Role of cholesterol in fusion of Semliki Forest virus with membranes. Journal of Virology 52:281–283
    [Google Scholar]
  51. Kielian M. C., Jungerwirth S., Sayad K. U., De Candido S. 1990; Biosynthesis, maturation and acid activation of the Semliki Forest virus fusion protein. Journal of Virology 64:4614–4624
    [Google Scholar]
  52. Kondor-Koch C., Burke B., Garoff H. 1983; Expression of Semliki Forest virus proteins from cloned complementary DNA. I. The fusion activity of the spike glycoprotein. Journal of Cell Biology 97:644–651
    [Google Scholar]
  53. Kreis T. E., Lodish H. F. 1986; Oligomerization is essential for transport of vesicular stomatitis viral glycoprotein to the cell surface. Cell 46:929–937
    [Google Scholar]
  54. Lanzrein M., Kasermann N., Weingart R., Kempf C. 1993; Early events of Semliki Forest virus-induced cell-cell fusion. Virology 196:541–547
    [Google Scholar]
  55. Lazarowitz S. G., Choppin P. W. 1975; Enhancement of the infectivity of influenza A and B viruses by proteolytic cleavage of the haemagglutinin polypeptide. Virology 68:440–454
    [Google Scholar]
  56. Lear J. D., DeGrado W. F. 1987; Membrane binding and conformational properties of peptides representing the NH2 terminus of influenza HA2 . Journal of Biological Chemistry 262:6500–6505
    [Google Scholar]
  57. Levy-Mintz P., Kielian M. 1991; Mutagenesis of the putative fusion domain of the Semliki Forest virus spike protein. Journal of Virology 65:4292–4300
    [Google Scholar]
  58. Li Y., Drone C., Sat E., Ghosh H. P. 1993; Mutational analysis of the vesicular stomatitis virus glycoprotein G for membrane fusion domains. Journal of Virology 67:4070–4077
    [Google Scholar]
  59. Lobigs M., Garoff H. 1990; Fusion function of the Semliki Forest virus spike is activated by proteolytic cleavage of the envelope glycoprotein precursor p62. Journal of Virology 64:1233–1240
    [Google Scholar]
  60. Lobigs M., Wahlberg J. M., Garoff H. 1990; Spike protein oligomerization control of Semliki Forest virus fusion. Journal of Virology 64:5214–5218
    [Google Scholar]
  61. Lyles D. S., Varela V. A., Parce J. W. 1990; Dynamic nature of the quaternary structure of the vesicular stomatitis virus envelope glycoprotein. Biochemistry 29:2442–2449
    [Google Scholar]
  62. Martin K., Helenius A. 1991; Nuclear transport of influenza virus ribonucleoproteins: the viral matrix protein (M1), promotes export and inhibits import. Cell 67:117–30
    [Google Scholar]
  63. Melikyan G. B., Niles W. D., Peeples M. E., Cohen F. S. 1993a; Influenza hemagglutinin-mediated fusion pores connecting cells to planar membranes: flickering to final expansion. Journal of General Physiology 102:1131–1149
    [Google Scholar]
  64. Melikyan G. B., Niles W. D., Cohen F. S. 1993b; Influenza virus hemagglutinin-induced cell-planar bilayer fusion: quantitative dissection of fusion pore kinetics into stages. Journal of General Physiology 102:1151–1170
    [Google Scholar]
  65. Metsikkö K., Van Meer G., Simons K. 1986; reconstitution of the fusogenic activity of vesicular stomatitis virus. EMBO Journal 5:3429–3435
    [Google Scholar]
  66. Morris S. J., Sarkar D. P., White J. M., Blumenthal R. 1989; Kinetics of pH dependent fusion between 3T3 fibroblasts expressing influenza hemagglutinin and red blood cells. Journal of Biological Chemistry 264:3972–3978
    [Google Scholar]
  67. Nieva J. L., Bron R., Corver J., Wilschut J. 1994; Membrane fusion of Semliki Forest virus requires sphingolipids in the target membrane. EMBO Journal 13:2797–2804
    [Google Scholar]
  68. Ohnishi S. 1988; Fusion of viral envelopes with cellular membranes. Current Topics in Membrane Transport 32:257–296
    [Google Scholar]
  69. Omar A., Koblet H. 1988; Semliki Forest virus particles containing only the El envelope glycoprotein are infectious and can induce cell-cell fusion. Virology 166:17–23
    [Google Scholar]
  70. Pal R., Wagner R. R. 1987; Rhabdovirus membrane and maturation. In The Rhabdoviruses pp 75–128 Edited by Wagner R. R. New York: Plenum Press;
    [Google Scholar]
  71. Phalen T., Kielian M. 1991; Cholesterol is required for infection by Semliki Forest virus. Journal of Cell Biology 112:615–623
    [Google Scholar]
  72. Puri A., Winick J., Lowry R. J., Covell D., Eidelman O., Walter A., Blumenthal R. 1988; Activation of vesicular stomatitis virus fusion with cells by pretreatment at low pH. Journal of Biological Chemistry 263:4749–1753
    [Google Scholar]
  73. Puri A., Grimaldi S., Blumenthal R. 1992; Role of viral envelope sialic acid in membrane fusion mediated by the vesicular stomatitis virus envelope glycoproteins. Biochemistry 31:10108–10113
    [Google Scholar]
  74. Rafalski M., Ortiz A., Rockwell A., Van Ginkel L. C., Lear J. D., DeGrado W. F., Wilschut J. 1991; Membrane fusion activity of the influenza virus hemagglutinin: interaction of HA2 N-terminal peptides with phospholipid vesicles. Biochemistry 30:10211–10220
    [Google Scholar]
  75. Ramalho-Santos J., Nir S., Düzgunes N, Pato de Carvalho A., Pedroso de Lima M. C. 1993; A common mechanism for influenza virus fusion activity and inactivation. Biochemistry 32:2771–2779
    [Google Scholar]
  76. Rand R. P. 1981; Interacting phospholipid bilayers: measured forces and induced structural changes. Annual Review of Biophysical Bioengineering 10:277–314
    [Google Scholar]
  77. Riedel H. C., Kondor-Koch C., Garoff H. 1984; Cell surface expression of fusogenic vesicular stomatitis virus G protein from cloned cDNA. EMBO Journal 3:1477–1483
    [Google Scholar]
  78. Rose J. K., Doolittle R. F., Anilionis A., Curtis P. J., Wunner W. H. 1982; Homology between the glycoproteins of vesicular stomatitis virus and rabies virus. Journal of Virology 43:361–364
    [Google Scholar]
  79. Ruigrok R. W. H., Wrigley N. G., Calder L. J., Cusack S., Wharton S. A., Brown E. B., Skehel J. J. 1986a; Electron microscopy of the low pH structure of influenza virus haemagglutinin. EMBO Journal 5:41–49
    [Google Scholar]
  80. Ruigrok R. W. H., Martin S. R., Wharton S. A., Skehel J. J., Bayley P. M., Wiley D. C. 1986b; Conformational changes in the hemagglutinin of influenza virus which accompany heat-induced fusion of virus with liposomes. Virology 155:484–497
    [Google Scholar]
  81. Ruigrok R. W. H., Aitken A., Calder L. J., Martin S. R., Skehel J. J., Wharton S. A., Weiss W., Wiley D. C. 1988; Studies on the structure of the influenza virus haemagglutinin at the pH of membrane fusion. Journal of General Virology 69:2785–2795
    [Google Scholar]
  82. Salminen A., Wahlberg J. M., Lobigs M., Liljeström P., Garoff H. 1992; Membrane fusion process of Semliki Forest virus. II. Cleavage-dependent reorganization of the spike protein complex controls virus entry. Journal of Cell Biology 116:349–357
    [Google Scholar]
  83. Sarkar D. P., Morris S. J., Eidelman O., Zimmerberg J., Blumenthal R. 1989; Initial stages of influenza hemagglutinin-induced cell fusion monitored simultaneously by two fluorescent events: cytoplasmic continuity and lipid mixing. Journal of Cell Biology 109:113–122
    [Google Scholar]
  84. Sauter N. K., Bednarski M. D., Wurzburg B. A., Hanson J. E., Whitesides G. M., DSkehel J. J., Wiley D. C. 1989; Hemagglutinins from two influenza virus variants bind to sialic acid derivatives with millimolar dissociations constants: a 500-MHz proton nuclear magnetic resonance study. Biochemistry 28:8388–8396
    [Google Scholar]
  85. Schilegel R., Tralka M., Willingham M. C., Pastan I. 1983; Inhibition of VSV binding and infectivity by phosphatidylserine: is phosphatidylserine a VSV-binding site?. Cell 32:639–646
    [Google Scholar]
  86. Schlesinger M. J., Schlesinger S. 1986; Formation and assembly of alphavirus glycoproteins. In The Togaviridae and Flaviviridae pp 121–148 Edited by Schlesinger S., J M. Schlesinger New York: Plenum Press;
    [Google Scholar]
  87. Schoch C., Blumenthal R. 1993; Role of the fusion peptide sequence in initial stages of influenza hemagglutinin-induced fusion. Journal of Biological Chemistry 268:9267–9274
    [Google Scholar]
  88. Schoch C., Blumenthal R., Clague M. J. 1992; A long lived state for influenza virus-erythrocyte complexes committed to fusion at neutral pH. FEBS Letters 311:221–225
    [Google Scholar]
  89. Siegel D. P. 1993; Modeling protein-induced fusion mechanisms: insight from the relative stabilities of lipidic structures. In Viral Fusion Mechanisms pp 475–512 Edited by Bentz J. Boca Raton: CRC Press;
    [Google Scholar]
  90. Simons K., Warren G. 1984; A probe for membrane traffic in the animal cell. Advances in Protein Chemistry 36:79–132
    [Google Scholar]
  91. Skehel J. J., Bayley P. M., Brown E. B., Martin S. R., Water-field M. D., White J. W., Wilson I. A., Wiley D. C. 1982; Changes in the conformation of influenza virus hemagglutinin at the pH optimum of virus-mediated membrane fusion. Proceedings of the National Academy of Sciences, USA 79:968–972
    [Google Scholar]
  92. Spruce A. E., Iwata A., White J. M., Almers W. 1989; Patch clamp studies of single cell-fusion events mediated by a viral fusion protein. Nature 342:555–558
    [Google Scholar]
  93. Spruce A. E., Iwata A., Almers W. 1991; The first milliseconds of the pore formed by a fusogenic viral envelope protein during membrane fusion. Proceedings of the National Academy of Sciences, USA 88:3623–3627
    [Google Scholar]
  94. Stegmann T. 1994; Anchors aweigh. Current Biology 4:551–554
    [Google Scholar]
  95. Stegmann T., Booy F. P., Wilschut J. 1987; Effects of low pH on influenza virus. Journal of Biological Chemistry 262:17744–17749
    [Google Scholar]
  96. Stegmann T., White J. W., Helenius A. 1990; Intermediates in influenza induced membrane fusion. EMBO Journal 9:4231–4241
    [Google Scholar]
  97. Stegmann T., Delfino J. M., Richards F., Helenius A. 1991; The HA2 subunit of influenza hemagglutinin inserts into the target membrane prior to fusion. Journal of Biological Chemistry 266:18404–18410
    [Google Scholar]
  98. Stegmann T., Schoen P., Bron R., Wey J., Bartoldus I., Ortiz A., Nieva J.-L., Wilschut J. 1993; Evaluation of viral membrane fusion assays. Comparison of the octadecyl rhodamine dequenching assay with the pyrene excimer assay. Biochemistry 32:11330–11337
    [Google Scholar]
  99. Struck D. C., Hoekstra D., Pagano R. E. 1981; Use of resonance energy transfer to monitor membrane fusion. Biochemistry 20:4093–4099
    [Google Scholar]
  100. Tsao Y. H., Fennell Evans D. Wennerströ M. H. 1993; Long-range attractive force between hydrophobic surfaces observed by atomic force microscopy. Science 262:547–550
    [Google Scholar]
  101. Tse F. W., Iwata A., Almers W. 1993; Membrane flux through the pore formed by a fusogenic viral envelope protein during cell fusion. Journal of Cell Biology 121:543–552
    [Google Scholar]
  102. Tsurudome M., Glück R., Graf R., Falchetto R., Schaller U., Brunner J. 1992; Lipid interactions of the hemagglutinin HA2 NH2-terminal segment during influenza virus-induced membrane fusion. Journal of Biological Chemistry 267:20225–20232
    [Google Scholar]
  103. Wahlberg J. M., Garoff H. 1992; Membrane fusion process of Semliki Forest virus. I. Low pH-induced rearrangement in spike protein quaternary structure precedes virus penetration into cells. Journal of Cell Biology 116:339–348
    [Google Scholar]
  104. Wahlberg J. M., Bron R., Wilschut J., Garoff H. 1992; Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein. Journal of Virology 66:7309–7318
    [Google Scholar]
  105. Weber T., Paesold G., Mischler R., Semenza G., Brunner J. 1994; Evidence for H+-induced insertion of the influenza hemagglutinin HA2 N-terminal segment into the viral membrane. Journal of Biological Chemistry 269:18353–18358
    [Google Scholar]
  106. Webster R. G., Brown L. E., Jackson D. C. 1983; Changes in the antigenicity of the hemagglutinin molecule of H3 influenza virus at acidic pH. Virology 126:587–599
    [Google Scholar]
  107. Wharton S. A., Skehel J. J., Wiley D. C. 1986; Studies of influenza haemagglutinin-mediated membrane fusion. Virology 149:27–35
    [Google Scholar]
  108. Wharton S. A., Martin S. R., Ruigrok R. W. H., Skehel J. J., Wiley D. C. 1988; Membrane fusion by peptide analogues of influenza virus haemagglutinin. Journal of General Virology 69:1847–1857
    [Google Scholar]
  109. Wharton S. A., Hay A. J., Sugrue R. J., Skehel J. J., Weis W. I., Wiley D. C. 1990; Membrane fusion by influenza viruses and the mechanism of action of amantadine. In Use of X-ray crystallography in the design of antiviral agents pp 1–12 Edited by Laver W. G., Air G. M. Orlando: Academic Press;
    [Google Scholar]
  110. Wharton S. A., Belshe R. B., Skehel J. J., Hay A. J. 1994; Role of M2 protein in influenza virus uncoating: specific reduction in the rate of membrane fusion between virus and liposomes by amantadine. Journal of General Virology 75:945–948
    [Google Scholar]
  111. Wharton S. A., Calder L. J., Ruigrok R. W. H., Skehel J. J., Steinhauer D. A., Wiley D. C. 1995; Electron microscopy of antibody complexes of influenza virus haemagglutinin in the fusion pH conformation. EMBO Journal 14:240–246
    [Google Scholar]
  112. White J. M. 1992; Membrane fusion. Science 258:917–924
    [Google Scholar]
  113. White J. M., Helenius A. 1980; pH-dependent fusion between the Semliki Forest virus membrane and liposomes. Proceedings of the National Academy of Sciences, USA 11:3273–3277
    [Google Scholar]
  114. White J. M., Wilson I. A. 1987; Anti-peptide antibodies detect steps in a protein conformational change: low-pH activation of the influenza virus hemagglutinin. Journal of Cell Biology 105:2887–2896
    [Google Scholar]
  115. White J., Helenius A., Gething M.J. 1982a; Haemagglutinin of influenza virus expresed from a cloned gene promotes membrane fusion. Nature 300:658–659
    [Google Scholar]
  116. White J. M., Kartenbeck J., Helenius A. 1982b; Membrane fusion activity of influenza virus. EMBO Journal 1:217–222
    [Google Scholar]
  117. White J. M., Kielian M., Helenius A. 1983; Membrane fusion proteins of enveloped animal viruses. Quarterly Reviews of Biophysics 16:151–195
    [Google Scholar]
  118. Whitt M. A., Zagouras P., Crise B., Rose J. K. 1990; A fusion-defective mutant of the vesicular stomatitis virus glycoprotein. Journal of Virology 64:4907–4913
    [Google Scholar]
  119. Whitt M. A., Buonocore L., Prehaud C., Rose J. K. 1991; Membrane fusion activity, oligomerization, and assembly of the rabies virus glycoprotein. Virology 185:681–688
    [Google Scholar]
  120. Wilcox M. D., McKenzie M. O., Parce J. W., Lyles D. S. 1992; Subunit interactions of vesicular stomatitis virus envelope glycoprotein influenced by detergent micelles and lipid bilayers. Biochemistry 31:10458–10464
    [Google Scholar]
  121. Wiley D. C., Skehel J. J. 1987; The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annual Review of Biochemistry 56:365–374
    [Google Scholar]
  122. Wilson I. A., Skehel J. J., Wiley D. C. 1981; Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 A resolution. Nature 289:366–373
    [Google Scholar]
  123. Yamada S., Ohnishi S. 1986; Vesicular stomatitis virus binds and fuses with phospholipid domain in target cell membranes. Biochemistry 25:3703–3708
    [Google Scholar]
  124. Yewdell J. W., Gerhard W., Bächi T. 1983; Monoclonal antihemagglutinin antibodies detect irreversible antigenic alterations that coincide with the acid activation of influenza virus A/PR/8/34-mediated hemolysis. Journal of Virology 48:239–248
    [Google Scholar]
  125. Yu Y. G., King D. M. S., Shin Y.K. 1994; Insertion of a coiled-coil peptide from influenza virus hemagglutinin into membranes. Science 266:274–276
    [Google Scholar]
  126. Zagouras P., Ruusala A., Rose J. K. 1991; Dissociation and reassociation of oligomeric viral glycoprotein subunits in the endoplasmic reticulum. Journal of Virology 65:1976–1984
    [Google Scholar]
  127. Zebedee S. L., Lamb R. A. 1988; Influenza virus M2 protein: monoclonal antibody restriction of virus growth and detection of M2 in virions. Journal of Virology 62:2762–2772
    [Google Scholar]
  128. Zhang L., Ghosh H. P. 1994; Characterization of the putative fusogenic domain in vesicular stomatitis virus glycoprotein G. Journal of Virology 68:2186–2193
    [Google Scholar]
  129. Zimmerberg J., Blumenthal R., Sarkar D. P., Curran M., Morris S. J. 1994; Restricted movement of lipid and aqueous dyes through pores formed by influenza hemagglutinin during cell fusion. Journal of Cell Biology 127:1885–1894
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-7-1541
Loading
/content/journal/jgv/10.1099/0022-1317-76-7-1541
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error