1887

Abstract

We have investigated the kinetics of human immuno-deficiency virus (HIV) reverse transcription in infected T cells, using a synchronized, one-step, cell-to-cell infection model and quantitative PCR assays for the different DNA intermediate structures that are found sequentially during reverse transcription. Different efficiencies that might arise from the use of different primers and other PCR conditions were normalized by conversion of each PCR product signal to copy numbers by comparing with standards. After an initial lag period, the minus-strand strong-stop viral DNA was detected first. This was followed by the post-transfer newly extended minus-strand viral DNA and then by the plus-strand strong-stop DNA and fully extended minus-strand DNA. Kinetic data indicated that, once reverse transcription was initiated, the HIV reverse transcriptase synthesized minus-strand DNA at a rate of 150–180 bases/min, and that the first template transfer and the initiation of the plus-strand DNA synthesis imposed specific time delays. In contrast, minus-strand viral DNA synthesized after the second template transfer appeared at a time point very close to the time of the appearance of the last piece of DNA synthesized just before the second template switch, suggesting that the second switch occurred very rapidly. Taken together, our results define more accurately than was previously possible the rates of several of the steps in HIV reverse transcription in infected T cell lines and indicate different mechanisms for the two distinct template switches during retrovirus reverse transcription.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-76-7-1675
1995-07-01
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/jgv/76/7/JV0760071675.html?itemId=/content/journal/jgv/10.1099/0022-1317-76-7-1675&mimeType=html&fmt=ahah

References

  1. Aiyar A., Ge Z., Leis J. 1994; A specific orientation of RNA secondary structures is required for initiation of reverse transcription. Journal of Virology 68:611–618
    [Google Scholar]
  2. Allain B., Lapadat-Tapolsky M., Berlioz C., Darlix J.-L. 1994; Transactivation of the minus-strand DNA transfer by nucleocapsid protein during reverse transcription of the retroviral genome. EM BO Journal 13:973–981
    [Google Scholar]
  3. Barbosa P., Charneau P., Dumey N., Clavel F. 1994; Kinetic analysis of HIV-1 early replicative steps in a coculture system. AIDS Research and Human Retroviruses 10:53–59
    [Google Scholar]
  4. Biswal N., McCain B., Benyesh-Melnick M. 1971; The DNA of murine sarcoma-leukaemia virus. Virology 45:697–706
    [Google Scholar]
  5. Buiser R. G., Destefano J. J., Mallaber L. M., Fay P. J., Bambara R. A. 1991; Requirements for the catalysis of strand transfer synthesis by retroviral DNA polymerases. Journal of Biological Chemistry 266:13103–13109
    [Google Scholar]
  6. Byers M. J., Avery R. J., Boaz J., Kohne D. E. 1979; Presence of virus-specific DNA sequences in murine type C viruses. Journal of General Virology 43:611–621
    [Google Scholar]
  7. Charneau P., Clavel F. 1991; A single-stranded gap in human immunodeficiency virus unintegrated linear DNA defined by a central copy of the polypurine tract. Journal of Virology 65:2415–2421
    [Google Scholar]
  8. Charneau P., Alizon M., Clavel F. 1992; A second origin of DNA plus-strand synthesis is required for optimal human immunodeficiency virus replication. Journal of Virology 66:2814–2820
    [Google Scholar]
  9. Coffin J. M. 1990; Retroviridae and their replication. In Virology pp 1437–1500 Edited by Fields B. N., Knipe D. M. New York:: Raven Press.;
    [Google Scholar]
  10. Collin M., Gordon S. 1994; The kinetics of human immunodeficiency virus reverse transcription are slower in primary human macrophages than in a lymphoid cell line. Virology 200:114–120
    [Google Scholar]
  11. Deeney A. O., Stromberg K., Beaudreau G. S. 1976; Identification of DNA in the core component of avian myeloblastosis virus. Biochimica et Biophysica Acta 432:281–291
    [Google Scholar]
  12. Farnet C. M., Haseltine W. A. 1990; Integration of human immunodeficiency virus type 1 DNA in vitro. Proceedings of the National Academy of Sciences, USA 87:4164–4168
    [Google Scholar]
  13. Farnet C. M., Haseltine W. A. 1991; Determination of viral protein present in the human immunodeficiency virus type 1 preintegration complex. Journal of Virology 65:1910–1915
    [Google Scholar]
  14. Gao W.-Y., Cara A., Gallo R. C., Lori F. 1993; Low levels of deoxynucleotides in peripheral blood lymphocytes, a strategy to inhibit human immunodeficiency virus type 1 replication. Proceedings of the National Academy of Sciences, USA 90:8925–8928
    [Google Scholar]
  15. Hirt B. 1967; Selective extraction of polyoma DNA from infected mouse cell cultures. Journal of Molecular Biology 26:365–369
    [Google Scholar]
  16. Hu W.-S., Temin H. M. 1990; Retroviral recombination and reverse transcription. Science 250:1227–1233
    [Google Scholar]
  17. Huber H. E., Richardson C. C. 1990; Processing of the primer for plus-strand DNA synthesis by human immunodeficiency virus 1 reverse transcriptase. Journal of Biological Chemistry 265:10565–10573
    [Google Scholar]
  18. Huber H. E., McCoy J. M., Seehra J. S., Richardson C. C. 1989; Human immunodeficiency virus 1 reverse transcriptase. Journal of Biological Chemistry 264:4669–4678
    [Google Scholar]
  19. Jones J. S., Allan R. W., Temin H. M. 1994; One retroviral RNA is sufficient for synthesis of viral DNA. Journal of Virology 68:207–216
    [Google Scholar]
  20. Karageorgos L., Li P., Burrell C. 1993; Characterization of HIV replication complexes early after cell-to-cell infection. AIDS Research and Human Retroviruses 9:817–823
    [Google Scholar]
  21. Kim S., Byrn R., Groopman J., Baltimore D. 1989; Temporal aspects of DNA and RNA synthesis during human immunodeficiency virus infection, evidence for differential gene expression. Journal of Virology 63:3708–3713
    [Google Scholar]
  22. Klaver B., Berkhout B. 1994; Premature strand transfer by the HIV-1 reverse transcriptase during strong-stop DNA synthesis. Nucleic Acids Research 22:137–144
    [Google Scholar]
  23. Krogstad P. A., Zack J. A., Chen I. S. Y. 1994; HIV-1 reverse transcription in cord blood lymphocytes: implications for infection of newborns. AIDS Research and Human Retroviruses 10:143–147
    [Google Scholar]
  24. Li P., Burrell C. J. 1992; Synthesis of human immunodeficiency virus DNA in a cell-to-cell transmission model. AIDS Research and Human Retroviruses 8:253–259
    [Google Scholar]
  25. Li P., Kuiper L. J., Stephenson A. J., Burrell C. J. 1992; De novo reverse transcription is a crucial event in cell-to-cell transmission of human immunodeficiency virus. Journal of General Virology 73:955–959
    [Google Scholar]
  26. Li P., Stephenson A. J., Kuiper L. J., Burrell C. J. 1993; Double-stranded strong-stop DNA and the second template switch in human immunodeficiency virus (HIV) DNA synthesis. Virology 194:82–88
    [Google Scholar]
  27. Li P., Stephenson A. J., Brennan P. A., Karageorgos L., Kok T., Kuiper L. J., Swift J., Burrell C. J. 1994; Initiation of reverse transcription during cell-to-cell transmission of human immunodeficiency virus infection uses pre-existing reverse transcriptase. Journal of General Virology 75:1917–1926
    [Google Scholar]
  28. Lori F., di Marzo Veronese F., de Vico A. L., Lusso P. Jr, Reitz M. S., Gallo R. 1992; Viral DNA carried by human immunodeficiency virus type 1 virions. Journal of Virology 66:5067–5074
    [Google Scholar]
  29. Munis J. R., Kornbluth R. S., Guatelli J. C., Richman D. D. 1992; Ordered appearance of human immunodeficiency virus type 1 nucleic acids following high multiplicity infection of macrophages. Journal of General Virology 73:1899–1906
    [Google Scholar]
  30. Myers G., Rabson A. B., Josephs S. F., Smith T. F., Benzofsky J. A., Wong-Staal F. 1990 Human Retroviruses and AIDS Los Alamos, New Mexico:: Los Alamos National Laboratory;
    [Google Scholar]
  31. Panganiban A. T., Fiore D. 1988; Ordered interstrand and intrastrand DNA transfer during reverse transcription. Science 241:1064–1069
    [Google Scholar]
  32. Peliska J. A., Benkovic S. J. 1992; Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Science 258:1112–1118
    [Google Scholar]
  33. Pullen K. A., Champoux J. J. 1990; Plus-strand origin for human immunodeficiency virus type 1: implications for integration. Journal of Virology 64:6274–6277
    [Google Scholar]
  34. Sato H., Orenstein J., Dimitrov D., Martin M. 1992; Cell-to-cell spread of HIV-1 occurs within minutes and may not involve the participation of virus particles. Virology 186:712–724
    [Google Scholar]
  35. Shaw G. M., Hahn B. H., Arya S. K., Groopman J. E., Gallo R. C., Wong-Staal F. 1984; Molecular characterization of human T-cell leukemia (lymphotropic) virus type III in the acquired immune deficiency syndrome. Science 226:1165–1171
    [Google Scholar]
  36. Stevenson M., Stanwick T. L., Dempsey M. P., Lamonica C. A. 1990; HIV-1 replication is controlled at the level of T cell activation and proviral integration. EMBO Journal 9:1551–1560
    [Google Scholar]
  37. Trono D. 1992; Partial reverse transcripts in virions from human immunodeficiency and murine leukaemia viruses. Journal of Virology 66:4893–1900
    [Google Scholar]
  38. Varmus H., Brown P. 1989; Retroviruses. In Mobile DNA pp 53–108 Edited by Berg P. E., Howe M. M. Washington, DC:: American Society for Microbiology;
    [Google Scholar]
  39. Varmus H., Swanstrom R. 1984; Replication of retroviruses. In RNA Tumor Viruses vol I 2nd edn., pp 369–512 Edited by Weiss R., Teich N., Varmus H., Coffin J. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Varmus H. E., Swanstrom R. 1985; Replication of retroviruses. In RNA Tumor Viruses vol II 2nd edn., pp 75–134 Edited by Weiss R., Teich N., Varmus H., Coffin J. New York: Cold Spring Harbor Laboratory;
    [Google Scholar]
  41. Zack J. A., Arrigo S. J., Weitsman S. R., Go A. S., Haislip A., Chen I. S. Y. 1990; HIV-1 entry into quiescent primary lymphocytes: molecular analysis reveals a labile, latent viral structure. Cell 61:213–222
    [Google Scholar]
  42. Zack J. A., Haislip A. M., Krogstad P., Chen I. S. Y. 1992; Incompletely reverse-transcribed human immunodeficiency virus type 1 genomes in quiescent cells can function as intermediates in the retroviral life cycle. Journal of Virology 66:1717–1725
    [Google Scholar]
  43. Zhu J., Cunningham J. 1993; Minus-strand DNA is present within murine type C ecotropic retroviruses prior to infection. Journal of Virology 67:2385–2388
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-76-7-1675
Loading
/content/journal/jgv/10.1099/0022-1317-76-7-1675
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error