1887

Abstract

Thymidine kinase (TK) activity was detected following expression of the TK gene of Epstein—Barr virus (EBV) using the pET expression plasmid and BL21(DE3)pLysS. To study the amino acid residues required at the C terminus of the EBV TK protein for enzymatic activity, a series of C-terminal deletion mutants was generated by direct truncation, linker insertion or PCR mutagenesis to create stop codons at particular sites. Deletion of nine residues from the C terminus caused a 35% reduction in TK activity, while a ten-residue deletion completely abolished the activity. A single point mutation at residue Cys570, corresponding to Cys336 of herpes simplex virus TK, did not alter the TK activity. Single amino acid changes within the last seven to ten residues also did not affect activity. The results indicate that maintenance of the conformation of the C terminus is important for enzyme activity.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-77-8-1893
1996-08-01
2024-05-09
Loading full text...

Full text loading...

/deliver/fulltext/jgv/77/8/JV0770081893.html?itemId=/content/journal/jgv/10.1099/0022-1317-77-8-1893&mimeType=html&fmt=ahah

References

  1. Baer R., Bankier A. T., Biggin M. D., Deininger P. L., Farrell P. J., Gibson T. J., Hatfull G., Hudson G. S., Satchwell S. C., Seguin C., Tuffnell P. S., Barrell B. G. 1984; DNA sequence and expression of the B95-8 Epstein–Barr virus genome. Nature 310:207–211
    [Google Scholar]
  2. Balasubramaniam N. K., Veerisetty V., Gentry G. A. 1990; Herpesviral deoxythymidine kinases contain a site analogous to the phosphoryl-binding arginine-rich region of porcine adenylate kinase: comparison of secondary structure predictions and conservation. Journal of General Virology 71:2979–2987
    [Google Scholar]
  3. Black M. E., Loeb L. A. 1993; Identification of important residues within the putative nucleoside binding site of HSV-1 thymidine kinase by random sequence selection: analysis of selected mutants in vitro . Biochemistry 32:11618–11626
    [Google Scholar]
  4. Chen R. L., Su I. J., Lin K. S., Lee S. H., Lin D. T., Chuu W. M., Lin K. S., Huang L. M., Lee C. Y. 1991; Fulminant childhood hemo-phagocytic syndrome mimicking histiocytic medullary reticulosis. An atypical form of Epstein–Barr virus infection. American Journal of Clinical Pathology 96:171–176
    [Google Scholar]
  5. Chen S. T., Estes J. E., Huang E. S., Pagano J. S. 1978; Epstein–Barr virus-associated thymidine kinase. Journal of Virology 26:203–208
    [Google Scholar]
  6. Chou P. Y., Fasman G. D. 1978; Prediction of the secondary structure of proteins from their amino acid sequences. Advances in Enzymology 47:145–148
    [Google Scholar]
  7. Darby G., Larder B. A., Inglis M. M. 1986; Evidence that the ′active centre′ of the herpes simplex vims thymidine kinase involves an interaction between three distinct regions of the polypeptide. Journal of General Virology 67:753–758
    [Google Scholar]
  8. de Thé G., Geser A., Day N. E., Tukei P. M., Williams E. H., Beri D. P., Smith P. G., Dean A. G., Bornkamm G. W., Feorino P., Henle W. 1978; Epidemiological evidence for causal relationship between Epstein–Barr vims and Burkitt′s lymphoma from Ugandan prospective study. Nature 274:756–761
    [Google Scholar]
  9. de Turenne-Tessier M., Ooka T., de The G., Daillie J. 1986; Characterization of an Epstein–Barr virus-induced thymidine kinase. Journal of Virology 57:1105–1112
    [Google Scholar]
  10. Dubbs D. R., Kit S. 1964; Isolation and properties of vaccinia mutants deficient in thymidine kinase-inducing activity. Virology 22:214–225
    [Google Scholar]
  11. Epstein M. A., Achong B. G., Barr Y. M. 1964; Virus particles in cultured lymphoblasts from Burkitt′s lymphoma. Lancet i:702–703
    [Google Scholar]
  12. Glaser R., Ogino T., Zimmerman J. J., Rapp F. 1973; Thymidine kinase activity in Burkitt lymphoblastoid somatic cell hybrids after induction of the EB virus. Proceedings of the Society for Experimental Biology and Medicine 142:1059–1062
    [Google Scholar]
  13. Graessmann A., Wolf H., Bornkamm G. W. 1980; Expression of Epstein–Barr virus genes in different cell types after microinjection of viral DNA. Proceedings of the National Academy of Sciences, USA 77:433–436
    [Google Scholar]
  14. Hackstadt T., Mallavia L. P. 1978; Deoxypyrimidine nucleoside metabolism in varicella-zoster virus-infected cells. Journal of Virology 25:510–517
    [Google Scholar]
  15. Hampar B., Derge J. G., Martos L. M., Walker J. L. 1971; Persistence of a repressed Epstein–Barr virus genome in Burkitt lymphoma cells made resistant to 5-bromodeoxyuridine. Proceedings of the National Academy of Sciences, USA 68:3185–3189
    [Google Scholar]
  16. Hanto D. W., Frizzera G., Gajl-Peczalska K. J., Simmons R. L. 1985; Epstein–Barr virus, immunodeficiency, and B cell lympho-proliferation. Transplantation 39:461–472
    [Google Scholar]
  17. Henle G., Henle W. 1979; The virus as the etiological agent of infectious mononucleosis. In The Epstein-Barr Virus pp 297–320 Edited by Epstein M. A., Achong B. G. Berlin: Springer-Verlag;
    [Google Scholar]
  18. Henle G., Henle W., Diehl V. 1968; Relation of Burkitt′s tumor-associated herpes-type virus to infectious mononucleosis. Proceedings of the National Academy of Sciences, USA 59:94–101
    [Google Scholar]
  19. Hsu T. Y., Pai C. Y., Shieh S. M., Cho S. M., Liu M. Y., Chen J. Y., Yang C. S. 1992; Use of antigen expressed in bacteria for detection of EBV-specific thymidine kinase antibodies in sera from patients with nasopharyngeal carcinoma. Journal of Medical Virology 38:214–219
    [Google Scholar]
  20. Irmiere A. F., Manos M., Jacobson J. G., Gibbs J. S., Coen D. M. 1989; Effect of an amber mutation in the herpes simplex virus thymidine kinase gene on polypeptide synthesis and stability. Virology 168:210–220
    [Google Scholar]
  21. Kieff E., Liebowitz D. 1990; Epstein–Barr virus and its replication. In Virology p 1889–1920 Edited by Fields B. N., Knipe D. M., Chanock R. M., Hirsch M. S., Melnick J. L., Monath T. P., Roizman B. New York: Raven Press;
    [Google Scholar]
  22. Kirchner E. A., Bornkamm G. W., Polack A. 1991; Transcriptional activity across the Epstein–Barr virus genome in Raji cells during latency and after induction of an abortive lytic cycle. Journal of General Virology 72:2391–2398
    [Google Scholar]
  23. Kit S., Dubbs D. R. 1963; Acquisition of thymidine kinase activity by herpes simplex infected mouse fibroblast cells. Biochemical and Biophysical Research Communications 11:55–59
    [Google Scholar]
  24. Kit S., Dubbs D. R. 1965; Properties of deoxythymidine kinase partially purified from noninfected and virus-infected mouse fibroblast cells. Virology 26:16–27
    [Google Scholar]
  25. Kit S., Leung W. C., Jorgensen G. N., Trkula D., Dubbs D. R. 1975; Viral-induced thymidine kinase isozymes. Progress in Medical Virology 21:13–34
    [Google Scholar]
  26. Laux G., Freese K., Fischer R., Polack A., Holler E., Bornkamm G. 1988; TPA-inducible Epstein–Barr virus genes in Raji cells and their regulation. Virology 162:503–507
    [Google Scholar]
  27. Littler E., Zeuthen J., McBride A. A., Sorensen E. T., Powell K. L., Walsh-Arrand J. E., Arrand J. R. 1986; Identification of an Epstein-Barr virus-coded thymidine kinase. EMBO Journal 5:1959–1966
    [Google Scholar]
  28. Littler E., Newman W., Arrand J. R. 1990; Immunological response of nasopharyngeal carcinoma patients to the Epstein–Barr virus coded thymidine kinase expressed in Escherichia coli . International Journal of Cancer 45:1028–1032
    [Google Scholar]
  29. Liu M. Y., Pai C. Y., Shieh S. M., Hsu T. Y., Chen J. Y., Yang C. S. 1992; Cloning and expression of a cDNA encoding the Epstein-Barr virus thymidine kinase gene. Journal of Virological Methods 40:107–118
    [Google Scholar]
  30. Liu Q., Summers W. C. 1988; Site-directed mutagenesis of a nucleotide-binding domain in HSV-1 thymidine kinase: effects on catalytic activity. Virology 163:638–642
    [Google Scholar]
  31. MacGabhann P., Sugawara K., Ito Y. 1984; Characterization of Epstein–Barr virus-related thymidine kinase induced in nonproducer cells by superinfection or chemical treatment. Intervirology 21:104–109
    [Google Scholar]
  32. Mackett M., Littler E., Michael R., Gartland M., Arrand J. R. 1990; Vectors with multiple insertion sites for expression of cloned genes by T7 RNA polymerase: expression of a peptide from EBV thymidine kinase (TK). Nucleic Acids Research 18:1082
    [Google Scholar]
  33. Old J. L., Boyse E. A., Oettgen H. F., de Harven E., Geering G., Williamson B., Clifford P. 1966; Precipitating antibody in human serum to an antigen present in cultured Burkitt′s lymphoma cells. Proceedings of the National Academy of Sciences, USA 56:1699–1704
    [Google Scholar]
  34. Ooka T., Calender A. 1980; Effects of arabinofuranosylthymine on Epstein–Barr virus replication. Virology 104:219–233
    [Google Scholar]
  35. Povey A. C., Cooper D. P., Littler E. 1991; 32P-Postlabelling of alkylated thymidines using Epstein–Barr virus encoded thymidine kinase. Carcinogenesis 12:709–712
    [Google Scholar]
  36. Roberts G. B., Fyfe J. A., Gaillard R. K., Short S. A. 1991; Mutant varicella-zoster virus thymidine kinase: correlation of clinical resistance and enzyme impairment. Journal of Virology 65:6407–6413
    [Google Scholar]
  37. Roubal J., Klein G. 1981; Synthesis of thymidine kinase (TK) in Epstein-Barr virus-superinfected Raji TK-negative cells. Intervirology 15:43–48
    [Google Scholar]
  38. Stinchcombe T., Clough W. 1985; Epstein–Barr virus induces a unique pyrimidine deoxynucleoside kinase activity in superinfected and virus-producer B cell lines. Biochemistry 24:2027–2033
    [Google Scholar]
  39. Su I. J., Hsieh H. C. 1992; Clinicopathological spectrum of Epstein–Barr virus-associated T cell malignancies. Leukemia & Lymphoma 7:47–53
    [Google Scholar]
  40. Suzutani T., Lacey S. F., Powell K. L., Purifoy D. J. M., Honess R. W. 1992; Random mutagenesis of the thymidine kinase gene of varicella-zoster virus. Journal of Virology 66:2118–2124
    [Google Scholar]
  41. Takada K., Ono Y. 1989; Synchronous and sequential activation of latently infected Epstein–Barr virus genomes. Journal of Virology 63:445–449
    [Google Scholar]
  42. Tung P. P., Summers W. C. 1994; Substrate specificity of Epstein–Barr virus thymidine kinase. Antimicrobial Agents and Chemotherapy 38:2175–2179
    [Google Scholar]
  43. Zemskova M. Y., Fodor I. 1991; Transient expression of deletion mutants of the herpes simplex virus thymidine kinase-encoding gene in mouse fibroblast cells. Gene 106:249–253
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-77-8-1893
Loading
/content/journal/jgv/10.1099/0022-1317-77-8-1893
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error