1887

Abstract

Although desirable for safety reasons, the host range restrictions of modified vaccinia virus Ankara (MVA) make it less applicable for general use. Propagation in primary chicken embryo fibroblasts (CEF) requires particular cell culture experience and has no pre-established record of tissue culture reproducibility. We investigated a variety of established cell lines for productive virus growth and recombinant gene expression. Baby hamster kidney cells (BHK), a well-characterized, easily maintained cell line, supported MVA growth and as proficient expression of the reporter gene as the highly efficient CEF, whereas other cell lines were non-permissive or allowed only very limited MVA replication. Importantly, no virus production occurred in patient-derived infected primary human cells. These results emphasize the safety and now improved accessibility of MVA for the development of expression vectors and live recombinant vaccines.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-2-347
1998-02-01
2024-05-04
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/2/9472619.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-2-347&mimeType=html&fmt=ahah

References

  1. Baron M. D., Barrett T. 1997; Rescue of rinderpest virus from cloned cDNA. Journal of Virology 71:1265–1271
    [Google Scholar]
  2. Boon T., Gajewski T. F., Coulie P. 1995; From defined human tumor antigens to effective immunization?. Immunology Today 16:334–336
    [Google Scholar]
  3. Brack-Werner R., Kleinschmidt A., Ludvigsen A., Mellert W., Neumann M., Herrmann R., Khim M. C. L., Burny A., Müller-Lantzsch N., Stavrou D., Erfle V. 1992; Infection of human brain cells by HIV-1: restricted virus production in chronically infected human glial cell lines. AIDS 6:273–285
    [Google Scholar]
  4. Broder C. C., Kennedy P. E., Michaels F., Berger E. A. 1994; Expression of foreign genes in cultured human primary macrophages using recombinant vaccinia virus vectors. Gene 142:167–174
    [Google Scholar]
  5. Bronte V., Carroll M. W., Goletz T. J., Wang M., Overwijk W. W., Marincola F., Rosenberg S. A., Moss B., Restifo N. P. 1997; Antigen expression by dendritic cells correlates with the therapeutic effectiveness of a model recombinant poxvirus tumor vaccine. Proceedings of the National Academy of Sciences, USA 94:3183–3188
    [Google Scholar]
  6. Carroll M. W., Overwijk W. W., Chamberlain R. S., Rosenberg S. A., Moss B., Restifo N. P. 1997; Highly attenuated modified vaccinia virus Ankara (MVA) as an effective recombinant vector: a murine tumor model. Vaccine 15:387–394
    [Google Scholar]
  7. Collins P., Hill M., Camargo E., Grosfeld H., Chanock R., Murphy B. 1995; Production of infectious human respiratory syncytial virus from cloned cDNA confirms an essential role for the transcription elongation factor from the 5ʹ proximal open reading frame of the M2 mRNA in gene expression and provides a capability for vaccine development. Proceedings of the National Academy of Sciences, USA 92:11563–11567
    [Google Scholar]
  8. Girolomoni G., Ricciardi-Castagnoli P. 1997; Dendritic cells hold promise for immunotherapy. Immunology Today 18:102–104
    [Google Scholar]
  9. Fenner F, Arita I., Jezek Z., Ladnyi I. D. 1988 Smallpox and its Eradication pp 539–592 Geneva: World Health Organization;
    [Google Scholar]
  10. Hirsch V., Fuerst T., Sutter G., Carroll M., Yang L., Goldstein S., Piatak M., Elkins W., Alvord G., Montefiori D., Moss B., Lifson J. 1996; Patterns of viral replication correlate with outcome in simian immunodeficiency virus (SlV)-infected macaques: effect of prior immunization with a trivalent SIV vaccine in modified vaccinia virus Ankara. Journal of Virology 70:3741–3752
    [Google Scholar]
  11. Mackett M., Smith G., Moss B. 1982; Vaccinia virus : a selectable eukaryotic cloning and expression vector. Proceedings of the National Academy of Sciences, USA 79:7415–7419
    [Google Scholar]
  12. Mahnel H., Mayr A. 1994; Erfahrung en bei der Schutzimpfung gegen Orthopocken von Mensch und Tier mit dem Impfstamm MVA. Berliner und Münchener Tiemäztliche Wochenschrift 107:253–256
    [Google Scholar]
  13. Mayr A., Hochstein-Mintzel V., Stickl H. 1975; Abstammung, Eigenschaften und Verwendung des attenuierten Vaccinia-Stammes MVA. Infection 3:6–14
    [Google Scholar]
  14. Mayr A., Stickl H., Müller H., Danner K., Singer H. 1978; Der Pockenimpfstamm MVA: Marker, genetische Struktur, Erfahrungen mit der parenteralen Schutzimpfung und Verhalten im abwehrgeschwachten Organismus. Zentralblatt für Bakteriologie und Hygiene, I. Abt. Orig B 167:375–390
    [Google Scholar]
  15. Mellert W., Kleinschmidt A., Schmidt J., Festl H., Emler S., Roth W. K., Erfle V. 1990; Infection of human fibroblasts and osteoblast-like cells with HIV-1. AIDS 4:527–535
    [Google Scholar]
  16. Meyer H., Sutter G., Mayr A. 1991; Mapping of deletions in the genome of the highly attenuated vaccinia virus MVA and their influence on virulence. Journal of General Virology 72:1031–1038
    [Google Scholar]
  17. Miller J. H. 1972 Experiments in Molecular Genetics pp 352–355 Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Moss B. 1996; Genetically engineered poxviruses for recombinant gene expression, vaccination, and safety. Proceedings of the National Academy of Sciences, USA 93:11341–11348
    [Google Scholar]
  19. Moss B., Carroll M., Wyatt L., Bennink J., Hirsch V., Goldstein S., Elkins W., Fuerst T., Lifson J., Piatak M., Restifo N., Overwijk W., Chamberlain R., Rosenberg S., Sutter G. 1996; Host range restricted, non-replicating vaccinia virus vectors as vaccine candidates. In Novel Strategies in the Design and Production of Vaccines pp 7–13 Cohen S., Shafferman A. Edited by New York: Plenum Press;
    [Google Scholar]
  20. Panicali D., Paoletti E. 1982; Construction of poxviruses as cloning vectors : insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus. Proceedings of the National Academy of Sciences, USA 79:4927–4931
    [Google Scholar]
  21. Rosenberg S. A. 1996; Development of cancer immunotherapies based on identification of the genes encoding cancer regression antigens. Journal of the National Cancer Institute 88:1635–1644
    [Google Scholar]
  22. Schneider H., Spielhofer P., Kaelin K., Dötsch C., Radecke F., Sutter G., Billeter M. A. 1997; Rescue of measles virus using a replication-deficient vaccinia-T7 vector. Journal of Virological Methods 64:57–64
    [Google Scholar]
  23. Stickl H., Hochstein-Mintzel V., Mayr A., Huber H., Schäfer H., Holzner A. 1974; MVA-Stufenimpfung gegen Pocken. Deutsche medizinische Wochenschrift 99:2386–2392
    [Google Scholar]
  24. Sutter G., Moss B. 1992; Nonreplicating vaccinia vector efficiently expresses recombinant genes. Proceedings of the National Academy of Sciences, USA 89:10847–10851
    [Google Scholar]
  25. Sutter G., Moss B. 1995; Novel vaccinia vector derived from the host range restricted and highly attenuated MVA strain of vaccinia virus. Developments in Biological Standardization 84:195–200
    [Google Scholar]
  26. Sutter G., Wyatt L. S., Foley P. L., Bennink J. R., Moss B. 1994; A recombinant vector derived from the host range-restricted and highly attenuated MVA strain of vaccinia virus stimulates protective immunity in mice to influenza virus. Vaccine 12:1032–1040
    [Google Scholar]
  27. Sutter G., Ohlmann M., Erfle V. 1995; Non-replicating vaccinia vector efficiently expresses bacteriophage T7 RNA polymerase. FEBS Letters 371:9–12
    [Google Scholar]
  28. Werner G. T., Jentzsch U., Metzger E., Simon J. 1980; Studies on poxvirus infections in irradiated animals. Archives of Virology 64:247–256
    [Google Scholar]
  29. Wyatt L., Moss B., Rozenblatt S. 1995; Replication -deficient vaccinia virus encoding bacteriophage T7 RNA polymerase for transient gene expression in mammalian cells. Virology 210:202–205
    [Google Scholar]
  30. Wyatt L. S., Shors S. T., Murphy B. R., Moss B. 1996; Development of a replication-deficient recombinant vaccinia virus vaccine effective against parainfluenza virus 3 infection in an animal model. Vaccine 14:1451–1458
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-2-347
Loading
/content/journal/jgv/10.1099/0022-1317-79-2-347
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error