1887

Abstract

Human papillomavirus (HPV) DNA, originally isolated from patients suffering from the skin disease epidermodysplasia verruciformis (EV), and a growing number of related sequences have recently been detected in a high percentage of benign and malignant skin lesions of both immunosuppressed and immunocompetent people. HPV L1 DNA fragments (374– 389 bp long) from a solar keratosis and a squamous cell carcinoma (SCC) of a renal transplant recipient were amplified, cloned and sequenced. In 54 clones, six different HPV sequences were identified. One of these six corresponded to the known type HPV-8 and two (RTRX3 and RTRX7) have been described previously in cutaneous lesions of immunosuppressed patients. The remaining three sequences were different from all known HPV types: an HPV-9-related sequence (77·4% identity), an RTRX2-related sequence (82·6% identity), and an HPV-22-related sequence (83·7% identity). These three sequences, representing putatively new HPV types, were named RTRX8, RTRX9 and RTRX10, respectively. RTRX7 was found in the majority of clones from both lesions. The complete genome of RTRX7 (7731 bp) was cloned as six overlapping subgenomic fragments, generated by nested PCR with DNA extracts from the SCC. RTRX7 showed a genome organization typical of HPVs associated with EV. The L1 DNA sequence differed by 15% from the corresponding region of its closest known relative, HPV- 12; thus, RTRX7 can be regarded as a new HPV type. RTRX7 DNA could not be detected by Southern blot hybridization with the homologous probe, indicating that the DNA concentration was below one copy per 10 cells in the investigated SCC.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-79-4-779
1998-04-01
2024-05-07
Loading full text...

Full text loading...

/deliver/fulltext/jgv/79/4/9568973.html?itemId=/content/journal/jgv/10.1099/0022-1317-79-4-779&mimeType=html&fmt=ahah

References

  1. Berkhout R. J. M., Tieben L. M., Smits H. L., Bouwes Bavinck J. N., Vermeer B. J., ter Schegget J. 1995; Nested PCR approach for detection and typing of epidermodysplasiaverruciformis-associated human papillomavirus types in cutaneous cancers from renal transplant recipients. Journal of Clinical Microbiology 33:690–695
    [Google Scholar]
  2. Chan S. Y., Delius H., Halpern A. L., Bernard H. U. 1995; Analysis of genomic sequences of 95 papillomavirus types: uniting typing, phylogeny, and taxonomy. Journal of Virology 69:3074–3083
    [Google Scholar]
  3. Deau M. C., Favre M., Orth G. 1991; Genetic heterogeneity among human papillomaviruses (HPV) associated with epidermodysplasia verruciformis: evidence for multiple allelic forms of HPV5 and HPV8 E6 genes. Virology 184:492–503
    [Google Scholar]
  4. de Jong-Tieben L. M., Berkhout R. J. M., Smits H. L., BouwesBavinck J. N., Vermeer B. J., van der Woude F. J., ter Schegget J. 1995; High frequency of detection of epidermodysplasia verruciformis-associated human papillomavirus DNA in biopsies from malignant and premalignant skin lesions from renal transplant recipients. Journal of Investigative Dermatology 105:367–371
    [Google Scholar]
  5. Delius H., Hofmann B. 1994; Primer-directed sequencing of human papillomavirus types. Current Topics in Microbiology and Immunology 186:13–31
    [Google Scholar]
  6. Ensser A., Pfister H. 1990; Epidermodysplasia verruciformis-associated human papillomaviruses present a subgenus-specific organization of the regulatory genome region. Nucleic Acids Research 18:3919–3922
    [Google Scholar]
  7. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791
    [Google Scholar]
  8. Fuchs P. G., Pfister H. 1997; Molecular biology of HPV and mechanisms of keratinocyte transformation. In Human Papillomavirus Infections in Dermatovenerology pp. 15–46 Gross G., von Krogh G. Edited by Boca Raton: CRC Press;
    [Google Scholar]
  9. Fuchs P. G., Iftner T., Weninger J., Pfister H. 1986; Epidermodysplasia verruciformis-associated human papillomavirus 8 : genomic sequence and comparative analysis. Journal of Virology 58:626–634
    [Google Scholar]
  10. Haller K., Stubenrauch F., Pfister H. 1995; Differentiation-dependent transcription of the Epidermodysplasia verruciformis-associated human papillomavirus type 5 in benign lesions. Virology 214:245–255
    [Google Scholar]
  11. Höpfl R., Petter A., Pfister H. 1996; Human papillomavirus in nonmelanoma skin cancer? The phylogenetic tree of the papillomavirus family is not yet complete. Archives of Dermatology 132:834
    [Google Scholar]
  12. Höpfl R., Bens G., Wieland U., Petter A., Zelger B., Fritsch P., Pfister H. 1997; Human papillomavirus DNA in non-melanoma skin cancers of a renal transplant recipient: detection of a new sequence related to Epidermodysplasia verruciformis-associated types. Journal of Investigative Dermatology 108:53–56
    [Google Scholar]
  13. Horn S., Pfister H., Fuchs P. G. 1993; Constitutive transcriptional activator of Epidermodysplasia verruciformis-associated human papillomavirus 8. Virology 196:674–681
    [Google Scholar]
  14. Jablonska S., Dabrowski J., Jakubowicz K. 1972; Epidermodysplasia verruciformis as a model in studies on the role of papova viruses in oncogenesis. Cancer Research 32:583–589
    [Google Scholar]
  15. Kawashima M., Favre M., Obalek S., Jablonska S., Orth G. 1990; Premalignant lesions and cancers of the skin in the general population: evaluation of the role of human papillomaviruses. Journal of Investigative Dermatology 95:537–542
    [Google Scholar]
  16. Kiyono T., Nagashima K., Ishibashi M. 1989; The primary structure of major viral RNA in a rat cell line transfected with type 47 human papillomavirus DNA and the transforming activity of its cDNA and E6 gene. Virology 173:551–565
    [Google Scholar]
  17. Krubke J., Kraus J., Delius H., Chow L., Broker T., Iftner T., Pfister H. 1987; Genetic relationship among human papillomaviruses associated with benign and malignant tumours of patients with Epidermodysplasia verruciformis. Journal of General Virology 68:3091–3103
    [Google Scholar]
  18. Kwok S. 1990; Procedure to minimize PCR-product carry-over. In PCR Protocols pp. 142–145 Innis M. A., Gelfand D. H., Sninski J. J., White T. J. Edited by San Diego: Academic Press;
    [Google Scholar]
  19. Lutzner M., Orth G., Dutronquay V., Ducasse M. F., Kreis H., Crosnier J. 1983; Detection of human papillomavirus type 5 DNA in skin cancers of an immunosuppressed renal allograft recipient. Lancet ii:422–424
    [Google Scholar]
  20. Myers G., Baker C., Wheeler C., Halpern A., McBride A., Doorbar J. editor 1996 Human Papillomaviruses 1996. A Compilation and Analysis of Nucleic Acids and Amino Acid Sequences Los Alamos: Los Alamos National Laboratory;
    [Google Scholar]
  21. Obalek S., Favre M., Szymanczyk J., Misiewicz J., Jablonska S., Orth G. 1992; Human papillomavirus (HPV) types specific of Epidermodysplasia verruciformis detected in warts induced by HPV3 or HPV3-related types in immunosuppressed patients. Journal of Investigative Dermatology 98:936–941
    [Google Scholar]
  22. Ohara Y., Honma M., Iwasaki Y. 1992; Sensitivity of the polymerase chain reaction for detecting human T-cell leukemia virus type 1 sequences in paraffin-embedded tissue. Effect of unbuffered formalin fixation. Journal of Virological Methods 37:83–88
    [Google Scholar]
  23. Orth G. 1987; Epidermodysplasia verruciformis. In The Papovaviridae: The Papillomaviruses pp. 199–243 Salzman N. P., Howley P. M. Edited by New York: Plenum Press;
    [Google Scholar]
  24. Ostrow R. S., Zachow K. R., Faras A. J. 1987; Molecular cloning and nucleotide sequence analysis of several naturally occurring HPV5 deletion mutant genomes. Virology 158:235–238
    [Google Scholar]
  25. Pfister H. 1992; Human papillomaviruses and skin cancer. Seminars in Cancer Biology 3:263–271
    [Google Scholar]
  26. Pfister H., Fuchs P. G. 1994; Anatomy, taxonomy and evolution of papillomaviruses. Intervirology 37:143–149
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method : a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4:406–425
    [Google Scholar]
  28. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: A Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press;
    [Google Scholar]
  29. Shamanin V., Glover M., Rausch C., Proby C., Leigh I. M., zur Hausen H., de Villiers E.-M. 1994; Specific types of human papillomavirus found in benign proliferations and carcinomas of the skin in immunosuppressed patients. Cancer Research 54:4610–4613
    [Google Scholar]
  30. Shamanin V., zur Hausen H., Lavergne D., Proby C., Leigh I. M., Neumann C., Hamm H., Goos M., Haustein U.-F., Jung E. G., Plewig G., Wolff H., de Villiers E.-M. 1996; Human papillomavirus infections in nonmelanoma skin cancers from renal transplant recipients and nonimmunosuppressed patients. Journal of the National Cancer Institute 88:802–811
    [Google Scholar]
  31. Soler C., Chardonnet Y., Allibert P., Euvrard S., Schmitt D., Mandrand B. 1993; Detection of mucosal human papillomavirus types 6/11 in cutaneous lesions from transplant recipients. Journal of Investigative Dermatology 101:286–291
    [Google Scholar]
  32. Stark L. A., Arends M. J., McLaren K. M., Benton E. C., Shahidullah H., Hunter J. A. A., Bird C. C. 1994; Prevalence of human papillomavirus DNA in cutaneous neoplasms from renal allograft recipients supports a possible viral role in tumour promotion. British Journal of Cancer 69:222–229
    [Google Scholar]
  33. Steger G., Olszewski M., Stockfleth E., Pfister H. 1990; Prevalence of antibodies to human papillomavirus type 8 in human sera. Journal of Virology 64:4399–4406
    [Google Scholar]
  34. Stubenrauch F., Malejczyk J., Fuchs P. G., Pfister H. 1992; Late promoter of human papillomavirus type 8 and its regulation. Journal of Virology 66:3485–3493
    [Google Scholar]
  35. Tieben L. M., ter Schegget J., Minnaar R. P., Bouwes Bavinck J. N., Berkhout R. J. M., Vermeer B. J., Jebbink M. F., Smits H. L. 1993; Detection of cutaneous and genital HPV types in clinical samples by PCR using consensus primers. Journal of Virological Methods 42:265–280
    [Google Scholar]
  36. Tieben L. M., Berkhout R. J. M., Smits H. L., Bouwes Bavinck J. N., Vermeer B. J., Bruijn J. A., van der Woude F. J., ter Schegget J. 1994; Detection of Epidermodysplasia verruciformis-like human papillomavirus types in malignant and premalignant skin lesions of renal transplant recipients. British Journal of Dermatology 131:226–230
    [Google Scholar]
  37. van Ranst M., Tachezy R., Burk R. D. 1996; Human papillomaviruses: a neverending story?. In Papillomavirus Reviews: Current Research on Papillomaviruses pp. 1–19 Lacey C. Edited by Leeds: Leeds University Press;
    [Google Scholar]
  38. Wieland U., Seelhoff A., Hofmann A., Kühn J. E., Eggers H. J., Mugyenyi P., Schwander S. 1997; Diversity of the vif gene of human immunodeficiency virus type 1 in Uganda. Journal of General Virology 78:393–400
    [Google Scholar]
  39. Yabe Y., Tanimura Y., Sakai A., Hitsumoto T., Nohara N. 1989; Molecular characteristics and physical state of human papillomavirus DNA change with progressing malignancy: studies in a patient with Epidermodysplasia verruciformis. International Journal of Cancer 43:1022–1028
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-79-4-779
Loading
/content/journal/jgv/10.1099/0022-1317-79-4-779
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error