1887

Abstract

The major regulation protein of human papillomavirus (HPV) transcription is the viral E2 protein. Previous studies have identified a variety of alternatively spliced mRNAs containing multiple open reading frames (ORFs) encoding the E2 protein of HPV type 16. In these mRNAs the E2 ORF is contained as an internal ORF. In the present study, the translational capacities of three mRNA species starting at the p97 promoter and containing the 880/2581, 880/2708 and 226/2708 splice junctions upstream of the E2 ORF were investigated. Partial cDNAs spanning the E2 ORF and the related upstream ORFs were synthesized and assessed for E2 protein translation in vivo, in COS cells, and , in cell-free systems. Results of these analyses indicated that E2 protein was translated from all three mRNAs. Translation efficiency of E2 from the natural polycistronic templates was lower compared with that from a synthetic monocistronic control. Translation from the d-type bicistronic template (226/2708) was more efficient than that from the a-type (880/2708) and a′-type (880/2561) polycistronic templates. Further investigation of the translation of proteins encoded by the ORFs preceding the E2 ORF showed that a- and a′-type templates served for translation mainly of E7 but also of E61, while the d-type template served for translation of E6IV. Overall, the translation data support the suggestion that the corresponding mRNAs may function as polycistronic transcripts.

Loading

Article metrics loading...

/content/journal/jgv/10.1099/0022-1317-80-1-29
1999-01-01
2024-04-27
Loading full text...

Full text loading...

/deliver/fulltext/jgv/80/1/0800029a.html?itemId=/content/journal/jgv/10.1099/0022-1317-80-1-29&mimeType=html&fmt=ahah

References

  1. Androphy E. J., Hubbert N. L., Schiller J. T., Lowy D. R. 1987; Identification of the HPV-16 E6 protein from transformed mouse cells and human cervical carcinoma cell lines. EMBO Journal 6:989–992
    [Google Scholar]
  2. Barbosa M. S., Wettstein F. O. 1988; E2 of cottontail rabbit papillomavirus is a nuclear phosphoprotein translated from an mRNA encoding multiple open reading frames. Journal of Virology 62:3242–3249
    [Google Scholar]
  3. Barbosa M. S., Vass W. C., Lowy D. R., Schiller J. T. 1991; In vitro biological activities of the E6 and E7 genes vary among human papillomaviruses of different oncogenic potential. Journal of Virology 65:292–298
    [Google Scholar]
  4. Bohm S., Wilczynski S. P., Pfister H., Iftner T. 1993; The predominant mRNA class in HPV16-infected genital neoplasias does not encode the E6 or the E7 protein. International Journal of Cancer 55:791–798
    [Google Scholar]
  5. de Villiers E. M. 1989; Heterogeneity of the human papillomavirus group. Journal of Virology 63:4898–4903
    [Google Scholar]
  6. Doorbar J., Parton A., Hartley K., Banks L., Crook T., Stanley M., Crawford L. 1990; Detection of novel splicing patterns in a HPV16- containing keratinocyte cell line. Virology 178:254–262
    [Google Scholar]
  7. Herlitze S., Koenen M. 1990; A general and rapid mutagenesis method using polymerase chain reaction. Gene 91:143–147
    [Google Scholar]
  8. Higgins G. D., Uzelin D. M., Phillips G. E., McEvoy P., Marin R., Burrell C. J. 1992; Transcription patterns of human papillomavirus type 16 in genital intraepithelial neoplasia: evidence for promoter usage within the E7 open reading frame during epithelial differentiation. Journal of General Virology 73:2047–2057
    [Google Scholar]
  9. Jackson R. J., Kaminski A. 1995; Internal initiation of translation in eukaryotes: the picornavirus paradigm and beyond. RNA 1:985–1000
    [Google Scholar]
  10. Jackson R. J., Howell M. T., Kaminski A. 1990; The novel mechanism of initiation of picornavirus RNA translation. Trends in Biochemical Sciences 15:477–483
    [Google Scholar]
  11. Johnsen C. K., Stanley M., Norrild B. 1995; Analysis of human papillomavirus type 16 E5 oncogene expression in vitro and from bicistronic messenger RNAs. Intervirology 38:339–345
    [Google Scholar]
  12. Kozak M. 1986; Regulat ion of protein synthesis in virus-infected animal cells. Advances in Virus Research 31:229–292
    [Google Scholar]
  13. Kozak M. 1987; Effects of intercistronic length on the efficiency of reinitiation by eucaryotic ribosomes. Molecular and Cellular Biology 7:3438–3445
    [Google Scholar]
  14. Kozak M. 1989; The scanning model for translation: an update. Journal of Cell Biology 108:229–241
    [Google Scholar]
  15. Kozak M. 1991; Structural features in eukaryotic mRNAs that modulate the initiation of translation. Journal of Biological Chemistry 266:19867–19870
    [Google Scholar]
  16. Lim P. S., Jenson A. B., Cowsert L., Nakai Y., Lim L. Y., Jin X. W., Sundberg J. P. 1990; Distribution and specific identification of papillomavirus major capsid protein epitopes by immunocytochemistry and epitope scanning of synthetic peptides. Journal of Infectious Diseases 162:1263–1269
    [Google Scholar]
  17. McBride A. A., Romanczuk H., Howley P. M. 1991; The papillomavirus E2 regulatory proteins. Journal of Biological Chemistry 266:18411–18414
    [Google Scholar]
  18. Meyers C., Mayer T. J., Ozbun M. A. 1997; Synthesis of infectious human papillomavirus type 18 in differentiating epithelium transfected with viral DNA. Journal of Virology 71:7381–7386
    [Google Scholar]
  19. Nasseri M., Gage J. R., Lorincz A., Wettstein F. O. 1991; Human papillomavirus type 16 immortalized cervical keratinocytes contain transcripts encoding E6, E7, and E2 initiated at the P97 promoter and express high levels of E7. Virology 184:131–140
    [Google Scholar]
  20. Nilsson C. H., Bakos E., Perry K. U., Schneider A., Durst M. 1996; Promoter usage in the E7 ORF of HPV16 correlates with epithelial differentiation and is largely confined to low-grade genital neoplasia. International Journal of Cancer 65:6–12
    [Google Scholar]
  21. Peabody D. S., Subramani S., Berg P. 1986; Effect of upstream reading frames on translation efficiency in simian virus 40 recombinants. Molecular Cell Biology 6:2704–2711
    [Google Scholar]
  22. Rohlfs M., Winkenbach S., Meyer S., Rupp T., Durst M. 1991; Viral transcription in human keratinocyte cell lines immortalized by human papillomavirus type-16. Virology 183:331–342
    [Google Scholar]
  23. Romanczuk H., Thierry F., Howley P. M. 1990; Mutational analysis of cis elements involved in E2 modulation of human papillomavirus type 16 P97 and type 18 P105 promoters. Journal of Virology 64:2849–2859
    [Google Scholar]
  24. Rotenberg M. O., Chiang C. M., Ho M. L., Broker T. R., Chow L. T. 1989; Characterization of cDNAs of spliced HPV-11 E2 mRNA and other HPV mRNAs recovered via retrovirus-mediated gene transfer. Virology 172:468–477
    [Google Scholar]
  25. Sachs A. B., Sarnow P., Hentze M. W. 1997; Starting at the beginning, middle, and end: translation initiation in eukaryotes. Cell 891:831–838
    [Google Scholar]
  26. Schneider-Gadicke A., Kaul S., Schwarz E., Gausepohl H., Frank R., Bastert G. 1988; Identification of the human papillomavirus type 18 E6 and E6* proteins in nuclear protein fractions from human cervical carcinoma cells grown in the nude mouse or in vitro . Cancer Research 48:2969–2974
    [Google Scholar]
  27. Schwarz E., Freese U. K., Gissmann L., Mayer W., Roggenbuck B., Stremlau A., zur Hausen H. 1985; Structure and transcription of human papillomavirus sequences in cervical carcinoma cells. Nature 314:111–114
    [Google Scholar]
  28. Shally M., Alloul N., Jackman A., Muller M., Gissmann L., Sherman L. 1996; The E6 variant proteins E6I-E6IV of human papillomavirus 16: expression in cell free systems and bacteria and study of their interaction with p53. Virus Research 42:81–96
    [Google Scholar]
  29. Sherman L., Alloul N. 1992; Human papillomavirus type 16 expresses a variety of alternatively spliced mRNAs putatively encoding the E2 protein. Virology 191:953–959
    [Google Scholar]
  30. Sherman L., Schlegel R. 1996; Serum and calcium-induced differentiation of human keratinocytes is inhibited by the E6 oncoprotein of human papillomavirus type 16. Journal of Virology 70:3269–3279
    [Google Scholar]
  31. Sherman L., Alloul N., Golan I., Durst M., Baram A. 1992; Expression and splicing patterns of human papillomavirus type-16 mRNAs in pre-cancerous lesions and carcinomas of the cervix, in human keratinocytes immortalized by HPV 16, and in cell lines established from cervical cancers. International Journal of Cancer 50:356–364
    [Google Scholar]
  32. Sherman L., Jackman A., Itzhaki H., Stoppler M. C., Koval D., Schlegel R. 1997; Inhibition of serum- and calcium-induced differentiation of human keratinocytes by HPV16 E6 oncoprotein: role of p53 inactivation. Virology 237:296–306
    [Google Scholar]
  33. Shirasawa H., Tomita Y., Kubota K., Kasai T., Sekiya S., Takamizawa H., Simizu B. 1988; Transcriptional differences of the human papillomavirus type 16 genome between precancerous lesions and invasive carcinomas. Journal of Virology 62:1022–1027
    [Google Scholar]
  34. Smotkin D., Wettstein F. O. 1986; Transcription of human papillomavirus type 16 early genes in a cervical cancer and a cancer- derived cell line and identification of the E7 protein. Proceedings of the National Academy of Sciences, USA 83:4680–4684
    [Google Scholar]
  35. Smotkin D., Prokoph H., Wettstein F. O. 1989; Oncogenic and nononcogenic human genital papillomaviruses generate the E7 mRNA by different mechanisms. Journal of Virology 63:1441–1447
    [Google Scholar]
  36. Sparkowski J., Anders J., Schlegel R. 1994; Mutation of the bovine papillomavirus E5 oncoprotein at amino acid 17 generates both high- and low-transforming variants. Journal of Virology 68:6120–6123
    [Google Scholar]
  37. Stacey S. N., Jordan D., Snijders P. J. F., Mackett M., Walboomers J. M. N., Arrand J. R. 1995; Translation of the human papillomavirus type 16 E7 oncoprotein from bicistronic mRNA is independent of splicing events within the E6 open reading frame. Journal of Virology 69:7023–7031
    [Google Scholar]
  38. Steger G., Corbach S. 1997; Dose-dependent regulation of the early promoter of human papillomavirus type 18 by the viral E2 protein. Journal of Virology 71:50–58
    [Google Scholar]
  39. Tan S. H., Gloss B., Bernard H.-U. 1992; During negative regulation of the human papillomavirus-16 E6 promoter, the viral E2 protein can displace Sp1 from a proximal promoter element. Nucleic Acids Research 20:251–256
    [Google Scholar]
  40. Tan S. H., Leong L. E.-C., Walker P. A., Bernard H.-U. 1994; The human papillomavirus type 16 E2 transcription factor binds with low cooperativity to two flanking sites and represses the E6 promoter through displacement of Sp1 and TFIID. Journal of Virology 68:6411–6420
    [Google Scholar]
  41. Thierry F. 1996; HPV proteins in the control of HPV transcription. In Papillomavirus Reviews: Current Research on Papillomaviruses Edited by Lacey A. Leeds: Leeds University Press;
    [Google Scholar]
  42. Yee C., Krishnan-Hewlett I., Baker C. C., Schlegel R., Howley P. M. 1985; Presence and expression of human papillomavirus sequences in human cervical carcinoma cell lines. American Journal of Pathology 119:361–366
    [Google Scholar]
  43. Zur Hausen H. 1989; Papillomaviruses as carcinomaviruses. Advances in Viral Oncology 8:1–26
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/jgv/10.1099/0022-1317-80-1-29
Loading
/content/journal/jgv/10.1099/0022-1317-80-1-29
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error